

Advancement of microchannels-based heat spreaders and applications in solar/thermal/electric conversion

Gherhardt Ribatski

Debora C. Moreira

Departamento de Engenharia Mecânica Escola de Engenharia de São Carlos, EESC Universidade de São Paulo, USP

Presentation Outline

- Introduction
- Solar energy technology
 - Photovoltaics
 - Solar collectors (thermal Engineering)
- Microstructured heat sinks
 - Single-phase flow
 - Multiphase flow
 - Waste heat reuse
 - Novel designs
- Concluding remarks

Solar irradiation

• Solar energy around the world:

Fraunhofer ISE Report (2016)

• Solar energy around the world:

- Solar energy around the world:
 - Europe -
 - China
 - Japan
 - United States
 - Canada

National Renewable Energy Action Plan:

- 20% of energy consumed in EU will come from renewable sources by 2020.

- The emission of greenhouse gases should be reduced by 20% in 2020, if compared with 1990.

Germany: 7% of electricity demand was generated by PV in 2014.

Spain has the 6th largest operational solar thermal power station.

- Solar energy around the world:
 - Europe
 - China —
 - Japan
 - United States
 - Canada

In 2015, China spent 2.5x more on clean energy than EU. Largest market for photovoltaics and solar thermal collectors since 2015. 70.6% of the world's capacity in solar thermal collectors. 13th five year plan: - Triple solar capacity by 2020. The largest photovoltaic power station is located in China.

- Solar energy around the world:
 - Europe
 - China
 - Japan
 - United States
 - Canada

Shifting from nuclear power to other forms of energy generation since Fukushima.

In 2015, 3.5% of electric energy consumed in Japan was generated by photovoltaics.

Japan is building the world's largest floating solar power plant (floatovoltaics).

7

- Solar energy around the world:
 - Europe
 - China
 - Japan
 - United States -
 - Canada

4.4% of the world's total solar thermal power capacity is installed in North America.

8 of the 10 largest photovoltaic power stations are located in the US.

Since 2008, solar energy installations have grown from 1.2GW to 30GW.

EESC • USP

- Solar energy around the world:
 - Europe
 - China
 - Japan
 - United States
 - Canada

Located in high latitude, it has a small solar potential, due to less solar irradiation.

Investment in solar generation stations are growing.

Has one of the three biggest solar companies in the world.

EESC • USP

• Solar energy around the world:

- Europe
- China
- Japan $\rightarrow +80\%$ of PV m
- United States
- Canada

+ 80% of PV module production

"Projeto Ituverava"-Bahia 254MW -2017

"The Stone Age came to an end not for a lack of stones and the oil age will end, but not for a lack of oil." Ahmed Zaki Yamani

• Photovoltaics x Solar collectors

- Photovoltaics:
 - Direct conversion into electricity;

- Tracking systems;
- New materials;
- Thin films
- Multi-junctions;
- Part of the absorbed energy is converted into heat;

- Cooling challenges:
 - High heat flux removal (~1MW/m²)
 - Non-uniform heating
 - Temperature variation during operation

SIMILAR REQUIREMENTS FROM ELECTRONICS INDUSTRY!!!

- Concentrating photovoltaics cooling techniques:
 - Heat pipe cooling
 - Jet impingement
 - Liquid immersion
 - Phase change material
 - Microchannel heat sinks

EESC • USP

- Solar collectors:
 - Conversion into heat;
 - Low-cost;
 - Benefit from advances in photovoltaic technology.

Weinstein et al. (2016)

- Solar collectors:
 - Applications:
 - Power cycles
 - Hydrogen production
 - Water desalination
 - Water heating
 - Photocatalysis

Weinstein et al. (2016)

(5)

(3)

(4)

(1)

- Applications demands:
 - High heat transfer rates
 - Low temperature gradients
 - Minimum energy consumption
 - Low-cost
 - Up-scalable fabrication
 - Reliability
 - Low temperature variation
 - High Critical Heat Flux
 - Leak-proof
 - Minimum maintenance

- Single-phase flow
 - Commercial devices are available
 - Limited performance
 - High temperature gradients
 - High pumping power

• Single-phase flow

20

• Single-phase flow

• Single-phase flow

Rahimi et al. (2015)

Multi header:

- -Lower pressure drop
- -Lower surface temperature
- -Higher heat removal
- -28% higher efficiency

• Single-phase flow

23

• Single-phase flow

Lenert et al. (2014)

1 1111111

1 mm

• Single-phase flow

Li et al. (2013)

Pressurized-air (~900°C)

- Two-phase flow
 - Non-condensable-liquid
 - Flow boiling
 - Selected saturation temperature and fluid velocity
 - Minimum temperature variation
 - Latent heat

• Two-phase flow

Two-phase flow

• Low G

200µm

100 µm

30

500 µm

200µm

. . .

100 µm

- Two-phase flow
 - High G

Leão and Ribatski (2015);

inlet

Microstructured heat sinks

- Two-phase flow
 - Back flows

32

Leão and Ribatski (2014)

- Two-phase flow
 - Back flows

Consolini et al. (2007)

Outer wall temperature fluctuations for flow boiling of R-134a in a single 0.8 mm circular channel, taken at half the channel length (heat flux: 140 kW/m², mass velocity: 300 kg/m²s, saturation temperature: 31 °C, channel length: 70 mm).

• Waste heat reuse

- Thermodynamic cycles
 - Organic Rankine Cycle
 - Ericsson or Stirling cycles
 - Refrigeration
- Water desalination
- Hydrogen production
- Ambient heating

EESC • USP

• Waste heat reuse

Michel and Paredes (2013) 2000suns

Wegeng et al. (2011)

37

Novel designs

Chávez and Ribatski (2014)

39

Novel designs

40

• Novel designs

41

2 µm

Novel designs

42

d)

• Novel designs

43

Concluding remarks

• Research needs:

- Mal-distribution effects
- Non-uniform heat distribution
- Dynamic controlling systems
- Increase CHF
- Minimize instabilities
- Cheaper and up-scalable fabrication
- Design optimization techniques
- Micro- and nanostructured surfaces
- Flexible heat sinks

Obreado!

