Controlling Hydrate Formation in Production Lines

Amadeu K. Sum

Associate Professor, Chemical & Biological Engineering

March 23, 2015

JEM 2015 - EBEM Campinas, SP - BRASIL

Hydrocarbon Production System

Hydrates in Flow Assurance

- Hydrate formation in oil/gas flow lines
- #1 problem in flow assurance (more severe than wax, asphaltene, corrosion)
- Costly to prevent (\$100sM per year)
- Costly to remove (lost production)
- Safety concern (pressure buildup)

Hydrate plug removed from oil pipeline

HYDRA

SCIENCETO ENGINEERING

Hydrates Fundamentals

High P

Low T

crystal structure

Burning hydrate

Hydrate Structures and Building Blocks

5¹²6⁴

 $(28 H_2 O)$

Structure II

16(5¹²) + 8(5¹²6⁴) / 136 H₂O

5¹² (20 H₂O)

5¹²6²

 $(24 H_2O)$

Structure I 2(5¹²) + 6(5¹²6²) / 46 H₂O

- At least 82% water
- One small molecules per cage

4³5⁶6³ (20 H₂O)

5¹²6⁸ (36 H₂O)

Structure H 3(5¹²) + 2(4³5⁶6³) + 1(5¹²6⁸) / 136 H₂O

HYDRATES

SCIENCEto ENGINEERING

- Inclusion, crystalline compounds
- Non-stoichiometric compounds

Depth and Breadth of Hydrate Research

lab scale multiphase flow chemical inhibition flowloop interfacial/surface science heat transfer mass transfer kinetics simulations thermodynamics aggregation modeling nucleation phenomemon rheology theory emulsification experiments

COLORADOSCHOOLOFMINE engineering the wa

Hydrates in Flow Assurance

Hydrates in Flow Assurance

Are hydrates a problem?

Hydrate Control Approaches

Hydrate Management Strategies

Hydrate Management Strategies

Hydrates in Flow Assurance

Hydrate Avoidance (inhibitor injection)

Determine hydrate phase stability boundary

Typical Hydrate Phase Diagram

Hydrates are a mixture by definition, but their phase behavior is the same as a simple component

Gibbs Phase Rule

F = C - P + 2

OLORADOS

F: degrees of freedom (intensive variable)C: number of componentsP: number of phases

Example: 2 components, 2 phases :: F = 2 4 components, 3 phases :: F = 3

Typical Hydrate Phase Diagram

Hydrate Avoidance: Inhibitor Injection

Most common THI (thermodynamic Hydrate Inhibitor): Methanol (MeOH), Ethanol (EtOH), Monoethylene glycol (MEG)

Hydrate inhibitor	Methanol (MeOH)	Monoethylene glycol (MEG)
Advantages	Easily vaporized into gas For flowline and topside plugs	Relatively recoverable For plugs in wells and risers
	No salt problems	solubility
Disadvantages	Costly to recover High gas and condensate losses Poisons molecular sieves, catalysts; downstream problems	High viscosity inhibits flow Boiler fouling, salt precipitation

SCIENCEto **E**NCINEERINC

Hydrate Avoidance: Inhibitor Injection

Most common THI (thermodynamic Hydrate Inhibitor): Methanol (MeOH), Ethanol (EtOH), Monoethylene glycol (MEG)

	MeOH	MEG
In water, lb _m /MMSCF	174.4	313.1
In gas, lb _m /MMSCF	34.2	0.006
In condensate, lb _m /MMSCF	0.8	0.0061
Total, lb _m /MMSCF	209.4	313.11
Total, gal/MMSCF	31.5	33.3

SCIENCEto ENGINEERINC

Hydrate Avoidance: PAST to PRESENT

- Focus on hydrate phase equilibrium boundary
- Under which conditions will hydrates form?
- If hydrates can form, how can they be inhibited?
- Thermodynamic hydrate inhibitions (methanol, MEG)
- Insulation
- Direct Electrical Heating

Hydrate Avoidance works!

Hydrates in FA: PRESENT to FUTURE

- Impractical (\$\$ and logistic) to completely avoid hydrates
- Must live with hydrates
- Management of hydrates
 - chemical treatment
 - monitoring
 - remediation

Must have good knowledge of how, when, where, how much hydrates are formed

Hydrate Remediation

How to safely remove a hydrate plug

Need to establish pressure communication in the flowline

21

SCIENCEto ENGINEERINC

- Two-side depressurization
- One-side depressurization
- Electrical heating
- Coil tubing
- Chemical treatment

Heat of Formation/Dissociation (ΔH_d)

- Latent heat of transformation for hydrates
 - Formation: exothermic
 - Dissociation: endothermic
 - Must input heat to remove hydrate plug in pipelines!
- Latent heat depends upon guest and occupancy
 - H ⇔ L + G CH₄: 54.2 kJ/mol C₂H₆: 71.8 kJ/mol C₃H₈: 129.2 kJ/mol

Values are per mole of guest

Hydrate Remediation

Hydrate plug dissociation is predominantly radial, as opposed axial

23

Hydrate Remediation

Hydrate plug dissociation/removal

- Partial dissociation (create annulus)
- Allow for pressure communication and chemical treatment

HYDRA

SCIENCEto ENGINEERING

Hydrate Remediation

Need to determine plug location and displacement

Model Hydrates in Multiphase Flow

Gas, Oil, Water (free, emulsified, dispersed)

Model Hydrates in Multiphase Flow

Gas, Oil, Water (free, emulsified, dispersed)

Hydrate Grows at the Interface

28

Hydrate growth on water droplet in contact with another hydrate particle (CyC5 hydrate)

COLORADOSCHOOLOFMINES engineering the way

Hydrate Growth at Interfaces

Formation in the bulk

Formation on the wall/surface

Hydrate Formation Rate

Induction time: metastable system

Growth can be limited by:

- Intrinsic growth kinetics (limited by rate of formation/ driving force)
- Mass transfer (limited by contact of gas and water)
- Heat transfer (limited by removal of heat from system)

 CH_4 solubility in water: ~ 1:4000 CH_4 in hydrate: ~ 1:6

 CH_4 hydrate ΔH_f = +54.2 kJ/mol

HYDRATES

SCIENCEto ENGINEERING

Model Hydrates in Multiphase Flow

Gas, Oil, Water (free, emulsified, dispersed)

Hydrate Interfacial Interactions

32

HYDRATES

SCIENCEto ENGINEERING

Crude Oil Prevents Water from "Jumping" onto Hydrate Particle

Hydrate-Water Droplet in Pure Cyclopentane (2.7°C) Video begins after 1 minute; spans 5 minutes

Hydrate-Water Droplet in 5 wt% crude oil (2.7°C) Video <u>begins</u> after 30 minutes; spans 15 minutes

HYDRATES

SCIENCEto ENGINEERING

After 45 minutes of contact, NO adhesion with crude oil

33

Cohesion Force for Hydrate Particles

Interfacial Properties of Hydrate Particles

Hydrate Agglomerate Diameter - *d*_⊿

Force balance between inter-particle and shear forces

- d_A hydrate agglomerate diameter

- interparticle force ($F_a/R = 50 \text{ mN/m}$) F_{a}
- oil viscosity μ_0
- shear rate γ

Solve for d_A - hydrate agglomerate diameter

(Camargo and Palermo, 2002)

Effective Hydrate Volume Fraction

Particle volume fraction + entrapped fluid fraction

d_A

 d_P

$$\Phi_{eff} = \Phi \left(\frac{d_A}{d_P}\right)^{(3-f)}$$

- d_A hydrate agglomerate diameter
- d_P hydrate particle diameter
- Φ hydrate particle volume fraction
- f fractal dimension

OLORADOS

Relative Viscosity

- Relative viscosity between oil and hydrate slurry
- Relative viscosity is a function of
 - particle volume fraction and size
 - attractive force, shear rate, and viscosity

- Φ effective particle volume fraction
- Φ_{max} maximum packing fraction (= 4/7)
- μ_r relative viscosity

(Mills, P. J., de Physique Letters, 1985)

Chemical injection of Low Dosage Hydrate Inhibitors (LDHIs)

Anti-Agglomerants (AAs)

- Used in oil systems
- Effective for low water cut system (< ~40%)
- Quaternary ammonium salts
- Used in low concentration, ~1-2 wt%
- Convert all (most) water to hydrate
- Prevent hydrate particles from agglomerating
- Good for high temperature, shut-in and restart of line
- Significant environmental concerns on disposal

Anti-Agglomerant in Pipeline

Without Anti-Agglomerant.

Chemical injection of Low Dosage Hydrate Inhibitors (LDHIs)

Kinetic Hydrate Inhibitors (KHIs)

- Water soluble chemicals
- Used in oil and gas systems
- Used in low concentration, ~1-2 wt%
- Allow initial hydrate crystal to form, prevent growth
- Limited to low subcooling ($\Delta T < \sim 10$ °C)
- Not for shut-in and restart operation
- Significant environmental concerns on disposal, water quality

Chemical Structures for Some KHIs

PVP

PVCap

42

VC-713

Poly(VP/VC)

Mechanism for how these KHIs work is unknown

HYDRATES

SCIENCEto ENGINEERING

Hydrate Formation and Subcooling

43

System need to be subcooled for hydrates to form (metastability due to liquidsolid transition)

KHIs tend to extend time system stay in metastable conditions

Mechanism hypothesis: KHI adsorbs on crystal surface

HYDRATES

SCIENCEto ENGINEERING

Hydrate Management for Shut-in/Restart

Steady state flow (dispersed water droplets)

Hydrate Management for Shut-in/Restart

- Phase separation after long shut-in
- Thin hydrate layer on the free water
- Very slow process (no shear)
- Systematic opening of valve
- Introduction of gas bubbles from well
- Rapid formation of hydrates
- Free water conversion to hydrates
- Gas bubbles conversion to hydrates
- Rapid plug formation before hot fluids from wellhead reach the plug location

COLORADOSCHOOLOFMINES engineering the way

Model Hydrates in Multiphase Flow

Gas, Oil, Water (free, emulsified, dispersed)

Hydrate Deposition (Gas systems)

Gas / Gas Condensate (no free water)

Hydrate Deposition from Gas Phase

CH₄ vapor saturated with water (no free water) at 30°C P = 100 bar, T_{cold} = 0.5°C 1 inch

Condensed water immediately converted to hydrates Porous hydrate anneals to become hard deposit

COLORADOSCHOOLOFMINES engineering the way

Hydrate Deposition from Gas Phase

How to prevent/minimize hydrate deposition on surfaces?

- Remove all water from gas (near impossible)
- Keep surface warm (insulation, heating)
- Coat inside surface (hydrophobic coating)
- Periodically scrap surface (pigging)

Conceptual Model for Hydrates in Multiphase Flow

Gas, Oil, Water (W/O and O/W Emulsions, Free)

Particle Jamming in Flowing Systems

Three Ingredients:

- Dense particle flow
- Flow restriction
- $d_o/d_p = R$ is small

HYDRATES

SCIENCEto ENGINEERING

COLORADOSCHOOLOFMINES

51

Variables:

- Particle size/shape
- Restriction size/shape
- Fluid velocity
- Particle concentration

Particle Jamming in Flowing Systems

0.3

0.20

0.10

0.00 Circular

52

I-P

engineering the way

Jamming Probability Map

SCIENCEto ENGINEERING

Model Hydrates in Multiphase Flow

Gas, Oil, Water (free, emulsified, dispersed)

Multiphase Flow & Hydrate Interdependence

- Hydrate formation = f(LL, WC, mixture velocity, T, P)
- **CSMFlow:** incorporates flow regime in calculations
- Effort to understand multiphase flow and its effect on hydrate formation (and vice-versa)

Multiphase Flow & Hydrate Interdependence

Multiphase Flow & Hydrate Interdependence

Fundamental Multiphase Flow Concepts

Fundamental Multiphase Flow Concepts

Fundamental Multiphase Flow Concepts

Phases hold-up: $H_G + H_L + H_{hyd} = 1$ Mixture velocity: $U_M = U_{SG} + U_{SL} + U_{Shyd}$ Slip Velocity: $U_{S (G-L)} = U_G - U_L$ $U_{S (L-hyd)} = U_L - U_{hyd}$

Determining Flow Regime and Transitions

 $F(H_L) = U_S H_L^2 + (U_M - U_S) H_L - U_{SL} \qquad F'(H_L) = U_S H_L^2 + (U_M' - U_S) H_L - U_{SL}'$

Hydrate Fraction Plays Important Role in Flow Behavior

Summary

- Hydrate avoidance works! Past, Present and Future
- Hydrate management: live with hydrates
- Must know the risk of hydrate formation and plugging
- More challenging production conditions: much to learn about hydrates

THANK YOU!

Questions???

Contact: asum@mines.edu

67

COLORADOSCHOOLOFMINES. engineering the way

