Ç

JEM

Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh Refinement, Front-Tracking, Immersed Boundary and Volume-of-Fluid

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC)

Work Team

Supervisors: • Prof. Dr. Aristeu da Silveira Neto - FEMEC-UFU/MG • Prof. Dr. Alexandre Meggiorim Roma - IME-USP/SP Researches: Doctors and Masters Dra. Millena M. Villar Vale • Dr. Márcio Ricardo Pivello Msc. Renato Pacheco Msc. Rodrigo Lisita Msc. Franco Barbi Msc. Lucas Vela Scientific Initiation Students Hélio Ribeiro Neto Fernando Muniz Lucas Alvarenga technical Support • Luizmar Lopez, Rodrigo Saramago e Bruno Martins External Collaborators • Prof. Dr. Berend Van-Wachen (Imperial College - London) • Prof. Dra. Catalina Rua (Universidad de Nariño - Colombia) • Prof. Dr. Rafael Sene (UFTPr) • Prof. Dra. Priscila Calegari ・ロト・日本・モト・モー ショー ショー Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC)

Infrastructure: MFLab

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC)

Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

Infrastructure: Cluster - MFLab

SGI ICE X e SGI Altix XE

- 2 racks e 54 nodes;
- Total numbers of cores (real + virtual): 1632 cores;
- Total memory: 5.3 TeraBytes;
- Disk space for data storage: 85TeraBytes;
- Theoretical peak performance: 19.1 TeraFlops = 19178 GigaFlops
- Interconnection: InfiniBand

- Computational nodes: 36
- Total numbers of cores: 284 cores;
- Total memory: 406 GigaBytes
- Disk space for data storage: 12.4TeraBytes;
- Interconnection: Gigabit Ethernet

DQQ

.

Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC)

Objetivos

Desenvolvimento de uma ferramenta computacional capaz de simular escoamentos complexos presentes na indústria petrolífera. Exemplos:

- Escoamentos monofásicos;
- Escoamentos bifásicos/multifásicos;
- Escoamentos reativos;
- Escoamentos com a presença de geometrias complexas;
- Escoamentos à variados números de Reynolds;
- Interação fluido-estrutura.

Physical flows aspects that must be modeled

- Shape interfaces;
- Deformable mobile interfaces;
- opposite properties with high aspect ratio;
- Detachment and replacement drops/droplets;
- **9** Bubbles/drops \ll domain \Rightarrow located refinement;
- High Reynolds number \Rightarrow turbulence modeling;
- Surface tension and physical properties \Rightarrow discontinuities;
- Triple contact presence: solid, liquid and gas;
- Physical mechanisms of objects transports and formation (drops, solid particles) and high number and different scales of time and length.

・ロト・オラト・ミラ・ミラ・ミラ・シスペ Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC) Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

AMR3d code features

Adaptive Mesh Refinement - AMR3d

- Based on local structured adaptive mesh refinement in space and time;
- Paralle, with MPI domain partition;
- Second order in space and time;
- Temporal discretization: semi-implicit (two phases flow) and implicit (reactives);
- Spatial discretization: finite difference (two phases flow) and finite volumes (reactives);
- Linear Systems: Multigrid-multilvel method, Strong Implicit Procedure (SIP), PETSC;

・ロト・国・・国・・国・ つんの

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC)

AMR3d code features

Adaptive Mesh Refinement - AMR3d

- Volume-of-Fluid Method and e Front-Tracking Method to represent the fluid-fluid interface;
- Immersed Boundary Method to represent the static and rigid budies;
- LES methodology to the turbulence modeling;
- Euler-Lagrange modeling to droplets transport;
- Triple contact line modeling.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 りゅぐ

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC)

Development historical code

Mathematical Modeling

Governement Equation

 $\rho(\phi)[\mathbf{u}_{\mathsf{t}} + (\mathbf{u} \cdot \nabla)\mathbf{u}] = \nabla \cdot [\mu(\phi)(\nabla \mathbf{u} + \nabla \mathbf{u}^{\dagger})] - \nabla \mathbf{p} + \rho(\phi)\mathbf{g} + \mathbf{f}_{\sigma} + \mathbf{f}_{s},$

 $\nabla \cdot \mathbf{u} = 0.$

 $\rho(\phi) = \rho_c + (\rho_d - \rho_c) \phi(\mathbf{X}, t)$ $\mu(\phi) = \mu_c + (\mu_d - \mu_c) \phi(\mathbf{X}, t)$

\$\phi\$: indicator function
F-T method: level set with sign
VoF method: color function

▲□▶▲@▶★≧▶★≧▶ ≧ の�?

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC) Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

Temporal discretization

MEX Schemes	
$\frac{\rho(\phi)^{n+1}}{\Delta t}(\alpha_2)$	$\mathbf{u}^{n+1} + \alpha_1 \mathbf{u}^n + \alpha_0 \mathbf{u}^{n-1}) = \beta_1 f(\mathbf{u}^n) + \beta_0 f(\mathbf{u}^{n-1}) + \beta_0 $
	$\lambda \Big[\theta_2 \nabla^2 \mathbf{u}^{n+1} + \theta_1 \nabla^2 \mathbf{u}^n + \theta_0 \nabla^2 \mathbf{u}^{n-1} \Big] - \nabla \rho^n + \rho^{n+1}(\phi) \mathbf{g},$
	$f(\mathbf{u}) = -\lambda \nabla^2 \mathbf{u} + \nabla \cdot \left[\mu (\nabla \mathbf{u} + \nabla \mathbf{u}^T) - \mathbf{u} \cdot \nabla \mathbf{u} + \mathbf{f}_{\sigma} \right]$
	$\Delta t_0 + 2\gamma\Delta t_c$ Δt_c
	$\alpha_2 = \frac{\Delta t_0 + 2\gamma \Delta t_1}{\Delta t_0 + \Delta t_1}, \theta_2 = \gamma + c \frac{\Delta t_1}{\Delta t_0 + \Delta t_1}$
	$\alpha_1 = \frac{\Delta t_1 - \Delta t_0 - 2\gamma \Delta t_1}{\Delta t_0}, \ \theta_1 = 1 - \gamma - c \frac{\Delta t_1}{\Delta t_0}$
	$lpha_0=-lpha_1-lpha_2, \ \ heta_0=c\Big(rac{\Delta t_1}{\Delta t_0}-rac{\Delta t_1}{\Delta t_0+\Delta t_1}\Big),$
	$\beta_1 = \frac{\Delta t_0 + \gamma \Delta t_1}{\Delta t}, \ \ \beta_0 = -\gamma \frac{\Delta t_1}{\Delta t},$

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC) Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

Temporal discretization

IMEX Schemes

- SBDF (Semi Backward Difference Formula): $(\gamma, c) = (1,0)$;
- CNAB (Crack-Nicolson Adans-Bashforth): $(\gamma, c) = (\frac{1}{2}, 0);$
- MCNAB (Modified Crack-Nicolson Adans-Bashforth): $(\gamma, c) = (\frac{1}{2}, \frac{1}{8});$
- CNLF (Cranck-Nicolson Leap-Frog): $(\gamma, c) = (0, 1)$.

Spatial discretization

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC) Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

Mathematical Modeling

Numerical Methodology

Numerical Methodology

・ロ・・聞・・聞・・聞・・日・

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC) Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

Adaptive mesh refinement

Adaptive mesh refinement

◆□▶◆舂▶◆≧▶◆≧▶ ≧ の�?

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC) Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

Ghosts cells on an adaptive mesh refinement

- Extrapolation on the same level $(* \rightarrow \triangle)$;
- Interpolation on the coarse level, *I* − 1 (● → □);
- Interpolation between *I* and *I* − 1, (△ and □ → ○)
- Importing ghosts cells from simbling grid;
- Apply the real boundary condition.

Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC)

Multigrid-Multilevel Algorithm

1:	for $l = l_{top} a 1$ do	
2:	if $l = l_{top}$ then	
3:	$e^{l_{ltop}}=0$	
4:	Calcule $L(\overline{\phi})$, em $\Omega^{l_{top}}$	
5:	$R^{l_{top}} \leftarrow B^{l_{top}} - L(\overline{\phi})^{l_{top}}$ e	$m \Omega^{I_{top}}$
6:	$e^{l_{ltop}} \leftarrow RBGS(A^{l_{ltop}}, e^{l_{ltop}})$	$(P^{p}, R^{l_{ltop}}) \operatorname{em} \Omega^{l_{top}}$
7:	else	
8:	$e_l = 0$	
9:	Calcule $L(\overline{\phi})^{I}$, em Ω^{I}	
10:	Calcule $L(e)^{\prime}$, em $\delta \Omega^{\prime+}$	-1
11:	$R' \leftarrow B' - L(\overline{\phi})'$, em Ω'	$1 - \Omega^{l+1}$
12:	$R' \leftarrow \mathscr{R}_{l}^{l+1}(R' - L(e'))$, em $P(\Omega_l^{l+1})$
13:	$e' \leftarrow RBGS(A', e', R')$	$\operatorname{em} \Omega'$
14:	end if	
15:	end for	< □ > < 图 > < 差 > < 差 > 差 の < @
	Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC)	Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh

Interface Modeling

Method	Pros	Cons	
Loval Sat	Conceptually simple	Limited precision	
Level Set	Easy implementation	Non conservative	
Charle Contura	Easy implementation	Numerical diffusion	
Shock Capture	Multiple advective Schemes available	Requires fine meshes	
	Extremely accurate	High computational cost	
Marker Particle	Robust	Marker particles must be	
	Can handle great topological changes	redistributed	
	Conceptually simple	Numeric diffusion	
SLIC VOF	Easy extension to 3D	Limited precision	
		Artificial fragmentation and	
		coalescence	
	Relatively simple	Artificial fragmentation and	
PLIC VOF	Precise	coalescence	
	Supports great topological changes		
Lattice Deltromon	Precise	Difficult to implement	
Lattice Boitzammi	Supports great topological changes	Artificial fragmentation and	
		coalescence	
	Extremely Precise	Requires mapping	
Front Trocking	Robust	Requires dynamic remeshing	
FIGHT HACKING	Supports great topological changes		
	No artificial coalescence or fragmentation (D) (P) (P) (P) (P)		

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC) Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

(

Curvat	ure
۲	Parabolic fitting: fit a curve, or mathematical function, that has the best fit to a series of data points. Fit a parabola (paraboloid in 3D) by minimising $F(a_i) \equiv \sum_{1 \le j \le n} [z'_j - f(a_i, x'_j)]$ with $f(a_i, x)] \equiv a_0 x^2 + a_1 y^2 + a_2 xy + a_3 X + a_4 y + a_5$ $\kappa \equiv 2 \frac{a_0(1+a_4^2)+a_1(1+a_3^2)-a_2a_3a_4}{(1+a_3^2+a_4^2)^{3/2}}$
•	Least Square: based on a least-squares fit of a Taylor series to determine the derivatives of the colour function field and the derivatives of the interface normal vector. Taylor series is developed for the colour function field around cell P with its neighbours Q: $\gamma_Q \equiv \gamma_P + \frac{\partial \gamma}{\partial x_i} _p(x_{i,Q} - x_{i,P}) + \frac{\partial^2 \gamma}{\partial x_i \partial x_j} _p(x_{i,Q} - x_{i,P})(x_{j,Q} - x_{j,P}) + O(\Delta x_i^3)$ $A \cdot \phi = b$ $\kappa = -\frac{\partial m_i}{\partial x_i} _p$

◆□▶◆聞▶◆言▶◆言▶ 言 少へぐ

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC) Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

Equations

$$\begin{aligned} \delta F_{\sigma} &= \oint_{\delta \Gamma} \sigma \mathbf{t} \times \mathbf{n} d\Gamma, \\ \mathbf{f}_{\sigma}(\mathbf{x}, t) &= \int \mathbf{F}_{\sigma}(\mathbf{X}, t) D(\mathbf{X} - \mathbf{x}) d\mathbf{X}, \\ \rho\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) &= \nabla \cdot \left(\mu(\nabla \mathbf{u} + \nabla \mathbf{u}^{T})\right) - \nabla \rho + \rho \mathbf{g} + \mathbf{f}_{\sigma}, \\ \nabla \cdot \mathbf{u} &= 0, \\ \mathbf{U}(\mathbf{X}, t) &= \int \mathbf{u}(\mathbf{x}, t) D(\mathbf{x} - \mathbf{X}) d\mathbf{x} \\ \frac{\partial \mathbf{X}(t)}{\partial t} &= \mathbf{U}(\mathbf{X}(t), t). \end{aligned}$$

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC) Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

	$D(\mathbf{x} - \mathbf{X}) = \frac{1}{h_x h_y h_z} W\left(\frac{x - X}{h_x}\right) W\left(\frac{y - Y}{h_y}\right) W\left(\frac{z - Z}{h_z}\right),$	
here	$W(r) = \begin{cases} \frac{1}{4}(1 + \cos(\frac{\pi}{2}r)), & r < 2, \\ 0, & r \ge 2, \end{cases}$	
nd	$r=\frac{x-X}{h_x},\frac{y-Y}{h_y},\frac{z-Z}{h_z}.$	
	$egin{aligned} \mathcal{H}(arphi) = \left\{ egin{aligned} 1, & arphi > \gamma \ 0.5(1+rac{arphi}{\gamma}+rac{1}{\pi}sin(rac{\piarphi}{\gamma})), & \ arphi\ \leq \gamma \ 0, & arphi < -\gamma \end{aligned} ight. \end{aligned}$	
	$\Psi(\varphi) = H(\varphi)\Psi_1 + (1 - H(\varphi))\Psi_2$	

・ロト・日本・山下・山下・山下・

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC) Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

Lagrangian Interface

GTS - GNU Triangulated Library

- Conservative Remeshing based on edge collapse.
 - Memoryless Polygon Simplification, Lindstrom and Turk (1999)
- Preserves geometry volume, area and shape; element quality

Lagrangian Interface

GTS - GNU Triangulated Library

- Conservative Remeshing based on edge collapse.
 - Memoryless Polygon Simplification, Lindstrom and Turk (1999)
- Preserves geometry volume, area and shape; element quality

VRA - Volume Recovery Algorithm

• Volume change is small and uniform over the whole surface

ロト 4 部 ト 4 画 ト 4 画 ト 一 画 - の Q (や

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC)

Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

Immersed Boundary

Coeficiente de Arrasto (C_d)						
Re	Referência	Escama	%			
10^{2}	1.8035	1.9448	+7,83			
10^{3}	0.7252	0.7490	+3,28			
10^{4}	0.6467	0.6103	-5,63			
10^{5}	0.6276	0.6052	-3,57			
10^{6}	0.6286	0.6070	-3,44			

・ロト・国ト・国ト・国ト 回・ つんの

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC)

Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

 ・ ・ イラ ・ イラ ・ イラ ・ イラ ・ ク へ へ

 Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC)
 Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

Flow in fans

General data

- Volumetric flow 60 T/h, ou 16 Nm³/s with rotation of 1650 RPM;
- Work temperature 69.2 °C;
- Density: $\rho = 0.5842 \, kg/m^3$;
- Viscosity: 8.659×10^{-6} Pa.s;
- Maximum reynolds number, based in the inlet boundary condition ≈ 2.2 milhões;
- Maximum reynolds number, based in rotor speed ≈ 36.85 milhões;

Prof. Dr. Aristeu da Silveira Neto (UFU/FEMEC)

Computational Modeling of Fluid-Fluid Flows Employing Adaptive Mesh F

<section-header><section-header><section-header><section-header><section-header><section-header><image>

Flow in fans

Fluid structure interaction example

Numerical features that are in progress

- Flow with high physical ratio;
- Solvers with best speedup;
- Isothermic flows;
- Contact triple modeling in complex geometries;
- Euler-lagrange modeling to droplets transport;
- Flows in presence of mobile complex geometries;
- Turbulence Modeling;
- Graphic interface.

Acknowledgements

