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Abstract. Immersed interface methods are becoming increasingly popular in fluid mechanics. In particular, the Immersed
Interface Method (IIM) figures among the most effective approaches, where traditionally the technique is used to simulate
the flow behavior over complex bodies immersed on a Cartesian mesh. In this work, a numerical approach based on the
IIM is proposed to solve the pressure equation in two-phase flow on a Cartesian grid, which is guaranteed to produce high
order accuracy. The effectiveness of the proposed technique is attested by simulating the Poisson equation in a variety of
irregular domains.
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1. INTRODUCTION

The basic idea of the IIM is to discretize the fluid equations on a uniform Cartesian grid while still imposing the jumps
of the function into the finite difference (FD) formulas in order to produce a solution. Its correction terms require jump
conditions to the first and second derivatives to reach a second-order accuracy. In (Xu and Wang, 2005), the authors
have suggested the use of IIM to simulate the interaction of a fluid with moving boundaries. Li and Lai (Li and Lai,
2001) and Lee and Leveque (Lee and LeVeque, 2003) employ the Immersed Interface Method to model a few number of
two-dimensional flow cases, achieving second-order spatial accuracy.

In (Zhong, 2006), the author presents a new high-order Immersed Interface Method to solve multi-phase flow. Al-
though the author claims that the method can be applied to simulate general multi-phase flows, in his work the method is
only used to solved elliptic equations on irregular interfaces. Linnick and Fasel (Linnick and Fasel, 2005) propose a high-
order Immersed Interface Method for simulating unsteady incompressible flow in an irregular domain, more specifically,
to compute incompressible flow over a cylinder. They compute the jump conditions obtaining a fourth-order compact
scheme.

The goal of this work is to obtain high-order immersed interface method to solve the pressure Poisson equation for
two-phase flow.

2. METHODOLOGY

In the following, we present the equations used to model a two-phase flow and the proposed methodology to solve the
pressure equation using the IIM.

2.1 FLUID EQUATIONS

Many two-phase fluid flows can be described by using the incompressible Navier-Stokes equations, which can be
written as follows:

ρ

[
∂u

∂t
+ u.5 u

]
= −5 p+5.[µ(5u +5uT ] + ρg + f , (1)

∂ρ

∂t
+5.(ρu) = 0, (2)

where ρ and µ are the fluid density and the fluid viscosity, respectively, p is the pressure term, u is the fluid velocity field,
f is the field of external force and g represents the gravity.

Once we have a set of equations to simulate an incompressible two-phase flow, let ρ be a constant assuming distinct
values for each one of the phases. The superscripts + and − are used to indicate both phases (see Fig. 1). Expliciting
the density and the viscosity in the above-mentioned phases, we have: ρ+, ρ−, µ+, µ−. So, introducing the jump
conditions across the interface Γ is needed, in mathematical words,

[ρ]Γ = ρ+ − ρ−, [µ]Γ = µ+ − µ−. (3)

In the absence of mass transfer between the two phases, the velocity field is continuous along the interface, that is,
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Figure 1. A rectangular domain Ω = Ω+ ∪ Ω− with an irregular immersed interface Γ.

[u]Γ = 0. In contrast, we have a surface tension force that induces to a discontinuity in the normal stresses at the fluid-fluid
interface which produces a pressure jump that can be expressed as:

[p]Γ = σκ+ 2[µ]Γn
T .5 u.n, (4)

where σ is the surface tension coefficient, κ is the curvature of the phase-interface, and n is the phase-interface normal.

2.2 NUMERICAL ALGORITHM

We firstly start by considering the one-dimensional problem

5.(β 5 p) = 5.u, (5)

on the interval [0, 1]. Function β = 1/ρ is allowed to be discontinuous at point xα. Once β assumes constants values in
both sides of the interface, we may write:

5.u = 5.(β 5 p)

5.u = βxpx + βpxx

5.u = βpxx.

From Eq. (6), we are able to solve the originated Poisson equation.
Figure 2 shows a function f(x) with discontinuity at x = xα.

x
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i+1
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h
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Figure 2. A function f(x) discontinuous at x = xα.

If xi < xα, the expansion of Taylor series can not be applied to approximate f(xi+1), unless a correction term Jα be
added:

f(xi+1) = f(xi) + f ′(xi)h+ f ′′(xi)
h2

2!
+ . . .+ Jα, (6)

where

Jα = [f ]α + [f ′]αh
+ +

1

2!
[f ′′]α(h+)2 + . . . , (7)
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h = xi+1 − xi, h+ = xi+1 − xα and [f ]α represents the jump in the function value at x = xα, that is:

[f ]α = lim
x→x+

α

f(x)− lim
x→x−

α

f(x), (8)

[f ′]α the jump in the value of the first derivative of the function at x = xα, and so on.
A finite difference scheme to solve the Poisson equation without discontinuity can be expressed by:

L2
i−1f

(2)
i−1 + L2

i f
(2)
i + L2

i+1f
(2)
i+1 = R2

i−1fi−1 +R2
i fi +R2

i+1fi+1, (9)

where the term Li refers to the finite-difference coefficients appearing on the left side of the FD scheme and Ri the
coefficients on the right side. So, considering the following scheme

1

12
(f

(2)
i−1 + 10f

(2)
i + f

(2)
i+1) =

1

h2
(fi−1 − 2fi + fi+1), (10)

we have Li−1 = Li+1 = 1/12, Li = 10/12, Ri−1 = Ri+1 = 1/h2, and Ri = −2/h2 (more details about the compact
fouth-order FD scheme, we refer (Lele, 1992)).

If the correction is needed, we can change Eq. (10) adding the term L2
IJα2 −R2

IJα0 in its right side:

L2
i−1f

(2)
i−1 + L2

i f
(2)
i + L2

i+1f
(2)
i+1 = R2

i−1fi−1 +R2
i fi +R2

i+1fi+1 + (L2
IJα2 −R2

IJα0), (11)

where Jα2 and Jα0 represent the correction terms to the second derivative and the zero order derivative. Both jump
correction terms are truncated by taking only enough terms to ensure order O(h4).

So, if the jump singularity occurs at xα : xi < xα < xi+1, I = i + 1, then the correction is required for the point xi
so that the jump correct terms are computed as follows:

Jα0 = [f (0)]α + [f (1)]αh
+ +

1

2!
[f (2)]α(h+)2 +

1

3!
[f (3)]α(h+)3 +

1

4!
[f (4)]α(h+)4 +

1

5!
[f (5)]α(h+)5, (12)

Jα2 = [f (2)]α + [f (3)]αh
+ +

1

2!
[f (4)]α(h+)2 +

1

3!
[f (5)]α(h+)3, (13)

for the zero and second derivative, respectively, and h+ = xi+1 − xα.
If the jump singularity occurs for xi−1 < xα < xi, I = i− 1, and

Jα0 = −[f (0)]α + [f (1)]αh
− − 1

2!
[f (2)]α(h−)2 +

1

3!
[f (3)]α(h−)3

− 1

4!
[f (4)]α(h−)4 +

1

5!
[f (5)]α(h−)5, (14)

Jα2 = −[f (2)]α + [f (3)]αh
− − 1

2!
[f (4)]α(h−)2 +

1

3!
[f (5)]α(h−)3, (15)

where h− = xα − xi−1.
In order to hold fourth order of accuracy, each one of the one-sided stencils employed to calculate the jumps should

contain six points. So, additional terms [f (n)]α can be computed from

[f (n)]α = f
(n)
F.D.+ − f

(n)
F.D.− , (16)

where

f
(n)
F.D.+ = cn+

α
f+
α + cni+2

fi+2 + cni+3
fi+3 + cni+4

fi+4 + cni+5
fi+5 + cni+6

fi+6 (17)

f
(n)
F.D.− = cn−

α
f−α + cni−1fi−1 + cni−2fi−2 + cni−3fi−3 + cni−4fi−4 + cni−5fi−5, (18)

if the jump singularity occurs for xi < xα < xi+1. The superscripts + and − indicate right and left limits, respectively.
In order to avoid issues relate to numerical instability, points xi and xi+1 are not used into the scheme.

If the jump singularity occurs for xi−1 < xα < xi, the points xi and xi−1 are not used and the derivative terms [f (n)]α
can be obtained as:

[f (n)]α = f
(n)
F.D.+ − f

(n)
F.D.− , (19)

where

f
(n)
F.D.+ = cn+

α
f+
α + cni+1

fi+1 + cni+2
fi+2 + cni+3

fi+3 + cni+4
fi+4 + cni+5

fi+5 (20)

f
(n)
F.D.− = cn−

α
f−α + cni−2

fi−2 + cni−3
fi−3 + cni−4

fi−4 + cni−5
fi−5 + cni−6

fi−6, (21)



M. Colnago, L. F. de Souza
High-Order Immersed Interface Method to Solve the Pressure Poisson Equation

In order to obtain a numerical approximation to the nth derivative of f , the coefficients cni are adopted as a linear
combination of the fi, for instance:

f+
α = lim

x→α+
f(x), and f−α = lim

x→α−
f(x). (22)

Aiming at finding the constants c′s, we employ the following explicit difference finite scheme to the nth derivative:

f (n)
α = cαfα + cifi + ci+1fi+1 + ci+2fi+2 + ci+3fi+3 + ci+4fi+4. (23)

So:
1 1 1 1 1 1
0 hi hi+1 hi+2 hi+3 hi+4

0 h2
i h2

i+1 h2
i+2 h2

i+3 h2
i+4

0 h3
i h3

i+1 h3
i+2 h3

i+3 h3
i+4

0 h4
i h4

i+1 h4
i+2 h4

i+3 h4
i+4

0 h5
i h5

i+1 h5
i+2 h5

i+3 h5
i+4




cα
ci
ci+1

ci+2

ci+3

ci+4

 =


1δn0

1δn1

2!δn2

3!δn3

4!δn4

5!δn5

 (24)

where hi = xi − xα and δij is the Kronecker delta function

δij =

{
1, if i = j,
0, if i 6= j.

(25)

To illustrate the above-described scheme, we explain below how to find c′s to obtain f (1)
F.D.+ when xi < xα < xi+1.

The explicit FD is:

f
(1)
F.D.+ = c1+

α
f+
α + c1i+2fi+2 + c1i+3fi+3 + c1i+4fi+4 + c1i+5fi+5 + c1i+6fi+6. (26)


1 1 1 1 1 1
0 hi+2 hi+3 hi+4 hi+5 hi+6

0 h2
i+2 h2

i+3 h2
i+4 h2

i+5 h2
i+6

0 h3
i+2 h3

i+3 h3
i+4 h3

i+5 h3
i+6

0 h4
i+2 h4

i+3 h4
i+4 h4

i+5 h4
i+6

0 h5
i+2 h5

i+3 h5
i+4 h5

i+5 h5
i+6




c1α
c1i+2

c1i+3

c1i+4

c1i+5

c1i+6

 =


1δ10

1δ11

2!δ12

3!δ13

4!δ14

5!δ15

 =


0
1
0
0
0
0

 (27)

In summary, if the jump singularity occurs at point xα : xi < xα < xi+1, we have:

1. At the point xi−1, there is no correction term. So:

L2
i−1f

(2)
i−1 + L2

i f
(2)
i + L2

i+1f
(2)
i+1 = R2

i−1fi−1 +R2
i fi +R2

i+1fi+1. (28)

2. At the point xi:

L2
i−1f

(2)
i−1 + L2

i f
(2)
i + L2

i+1f
(2)
i+1 = R2

i−1fi−1 +R2
i fi +R2

i+1fi+1 + (L2
IJα2 −R2

IJα0). (29)

And, if the jump singularity occurs at xα : xi−1 < xα < xi:

1. At the point xi+1, the stencil does not intersect the discontinuity points, then it is no needed to compute the correc-
tion term, that is:

L2
i−1f

(2)
i−1 + L2

i f
(2)
i + L2

i+1f
(2)
i+1 = R2

i−1fi−1 +R2
i fi +R2

i+1fi+1. (30)

2. At the point xi:

L2
i−1f

(2)
i−1 + L2

i f
(2)
i + L2

i+1f
(2)
i+1 = R2

i−1fi−1 +R2
i fi +R2

i+1fi+1 + (L2
IJα2 −R2

IJα0). (31)

From Eq. (28 - 31), we obtain a system of linear equations that can be solved using a direct or iterative algorithm.
Similar to 1D case, we can discretize the 2D case by using fourth-order compact finite-difference schemes. If there is

no discontinuity, the scheme results to solve:

5f(x, y) = ρ(x, y) (32)
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can be expressed by:

Lxxfxxij = Rxxifij (33)
Lyyfyyij = Ryyjfij . (34)

where Lxx, Lyy, Rxx and Ryy denote the coefficients in the FD scheme and fxx and fyy represent the numerical approx-
imations to the second partial derivatives in the x and y directions.

Using the Eq. (32-34), the 2D compact stencils at point (i, j) can be obtained as:

fxxij + fyyij = ρij (35)
LxxiLyyj (fxxij + fyyij ) = LxxiLyyjρij

Lyyj (Lxxifxxij ) + Lxxi(Lyyjfyyij ) = LxxiLyyjρij

Lyyj (Rxxifij) + Lxxi(Ryyjfij) = LxxiLyyjρij

(LyyjRxxi + LxxiRyyj )fij = LxxiLyyjρij

Lijfij = Rijρij (36)

where Lij = LyyjRxxi + LxxiRyyj and Rij = LxxiLyyj , resulting in a nine-point 2D stencil.

Figure 3. The nine-point stencil (•) given in Eq. (36) and the jump corrections terms (×). The points where (•) and (×)
overlap are represented by (�).

If corrections are required, we have:

Lxxfxxij = Rxxifij − JαxI (37)
Lyyfyyij = Ryyjfij − JαyK , (38)

where

JαxI = −(LxxIJα2x −RxxIJα0x) (39)
JαyK = −(LyyKJα2y −RyyKJα0y), (40)

and

I =

{
i− 1, xi−1 < xα < xi,
i+ 1, xi < xα < xi+1,

(41)

and similary for K. The jump corrections Jα2x, Jα0x, Jα2y and Jα0y are defined as in 1D case. Finally, the resulting of
2D discretizations for Eq. (32) with jump corrections becomes:

(LyyjRxxi + LxxiRyyj )fij = LxxiLyyjρij + (LyyjJαxIj + LxxiJαyKi). (42)

Fig. 3 portrays an stencil where jump corrections are needed.

3. RESULTS AND NUMERICAL SIMULATIONS

Example 1. In order to demonstrate the robustness of the IIM to simulate two-phase flows, we consider the following
equation:

βxpx + βpxx = u, (43)
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where

p(x) =

{
sin(2x), if x ≤ xα
cos(2x), if x > xα,

(44)

β(x) =

{
2, if x ≤ xα
1, if x > xα,

(45)

u(x) = βxpx + βpxx. (46)

and the jump occurs in xα = 0.755882.

Figure 4 shows a comparison between the original and our numerical solution while Fig. 5 depicts the obtained the
error. Both Figures show that the presence of the discontinuity does not affect the error, even for the points near to the
interface. In this case, the maximum error is located in the region without discontinuities.
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Figure 4. Comparison between analytical and numerical
solutions (Example 1).
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Figure 5. Error computed when applying Immersed
Interface Method (Example 1).

Figure 6 shows the error quantities obtained from the max-norm, wich is computed as:

‖ E ‖∞= max
1≤j≤m

| Ej |= max
1≤j≤m

| Pj − p(xj) |, (47)

where p and P are the analytical and numerical solutions, respectively, plotted against h on a log-log scale, where fourth-
order accuracy can be observed.
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Figure 6. Error values plotted against h on a log-log scale (Example 1).

Table 1 summarizes the errors obtained from max-norm, 1-norm and 2-norm (letting h varying) and the order calcu-
lated from

p =
log
(
error(h1)
error(h2)

)
log
(
h1

h2

) . (48)
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Table 1. Error and order of convergence (Example 1).

n ‖En‖∞ Order ‖En‖1 Order ‖En‖2 Order
20 1.18951e-07 - 7.31575e-08 - 8.21768e-08 -
40 5.55442e-09 4.2 2.19903e-09 4.3 2.72315e-09 4.3
80 3.12079e-10 4.1 1.31890e-10 3.9 1.67452e-10 4.0
160 1.93619e-11 4.0 1.08269e-11 3.7 1.20385e-11 3.8

It is clear from Table 1 that a fourth-order accuracy was reached, as expected.

Example 2. Now, we are interested in solving the Poisson equation on form

βxpx + βpxx = u, (49)

with two discontinuous points, xα1 = 0.51378, xα2 = 0.723141, and

p(x) =

 sin(2x), x < xα1,
cos(2x), xα1 ≥ x ≥ xα2,
sin(2x), otherwise,

(50)

β(x) =

 1/1.2047, x < xα1,
1/997.78, xα1 ≥ x ≥ xα2,
1/1.2047, otherwise,

(51)

Figure 7 illustrates a comparison between the numerical and analytical solutions while Fig. 8 depicts the max-norm
error.
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Figure 7. Comparison between the analytical and numerical
solutions (Example 2).
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Figure 8. Error computed when applying the Immersed
Interface Method (Example 2).

Table 1 summarizes the error obtained when applying the IIM for the Example 2.

Table 2. Error and order of convergence (Example 2).

n ‖En‖∞ Order ‖En‖1 Order ‖En‖2 Order
20 3.59957e-07 - 3.64580e-08 - 7.65209e-08 -
40 7.11242e-09 4.8 1.17188e-09 4.6 1.97306e-09 4.8
80 3.94013e-10 4.2 1.60084e-10 3.4 2.13229e-10 3.7
160 2.15280e-11 4.2 1.15359e-11 3.8 1.32448e-11 4.0

Example 3. In the next test case, we solve the following 2D Poisson equation:

(βpx)x + (βpy)y = −u(x, y) (52)
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defined in a square [−1, 1]× [−1, 1] with a circular interface x2 + y2 = 1/4. As provided by (LeVeque and Li, 1997), the
analytical solution is

p(x) =

{
x2 + y2, r ≤ 1/2,

1
4

(
1− 1

8b −
1
b

)
+
(

(x2+y2)2

2 + x2 + y2
)
/b, otherwise , (53)

with

β(x) =

{
2, r ≤ 1/2,
b, otherwise . (54)

Let b = 10 be a constant and p(x, y) be a continuous function throughout the domain. The experiment was performed
assuming a five-points FD scheme and, as shown in Table 3, second order of accuracy has been achieved.

Table 3. Error and convergence order for the IIM (Example 3).

n ‖En‖∞ Order ‖En‖1 Order ‖En‖2 Order
20 7.89759e-05 - 3.15031e-05 - 4.09409e-05 -
40 2.45938e-05 1.9 9.70220e-06 2.0 1.26339e-05 2.0
80 6.91275e-06 2.0 2.71758e-07 2.0 3.54093e-06 2.0
160 1.83601e-07 2.0 7.21229e-08 2.0 9.39694e-07 2.0

The obtained solution taking a 40× 40 mesh is plotted in Fig. 9.
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Figure 9. Computational solution (left) and the error (right) obtained from the Immersed Interface Method (Example 3).

4. CONCLUSION

In this work a high-order Immersed Interface Method to solve the pressure Poisson equation in two-phase flows has
been presented. As shown in Section 3, for 1D case the fourth-order accuracy is reached. Moreover, a second-order
accuracy is achieved using a five-points FD scheme to 2D case. Our experiments show that the convergence order is not
affected by the presence of discontinuities in the simulating domain. As future work, we aim at adapting this scheme
to simulate incompressible two-phase flows. Furthermore, we are also performing a variety of experiments taking a a
nine-points scheme in order to reach fourth-order accuracy for 2D case.
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