

Equações de Conservação

Angela O. Nieckele

Pontifícia Universidade Católica do Rio de Janeiro

Departamento de Engenharia Mecânica

DFC - Grupo de Dinâmica dos Fluidos Computacional

Objetivo

 Apresentação das equações de conservação para analisar escoamento multifásicos

Fases:

- Sólida (partículas)
- Líquido (uma ou mais imiscíveis)

Gás

Escoamentos Bifásicos:

- Gás/Líquido
- Gás/Sólido
- Líquido/Líquido

Multifásico

- Gás/Líquido/Líquido
- Gás/Sólido/Líquido
- Gás/Sólido/Líquido/Líquido

Classificados de acordo com a estrutura

Separados, misturados ou dispersos

Escoamento multifásicos são mais complexos de serem modelados do que escoamentos monofásicos, devido a estrutura complexa e desconhecida das interfaces

- Padrão de Escoamento: A importância em conhecer o padrão de escoamento é clara. É necessário para:
 - avaliar a transferência de calor, queda de pressão, etc.,
 - Realizar cálculos, visando determinar a condição de operação de equipamentos.
 - modelar o escoamento, pois dependendo do padrão, diferentes aproximações e consequentemente modelos podem ser mais apropriados

Escoamento monofásico:

- Leis de conservação: massa, quantidade de movimento e energia
- Condição de contorno: entrada, paredes, simetria e saída
- Classificado em laminar ou turbulento

Escoamento multifásico

- Mesma leis de conservação que o escoamento monofásico
- Dificuldades:
 - Múltiplas interfaces, deformáveis, móveis e desconhecidas
 - Descontinuidade de propriedades
 - Campos complexos nas regiões de interface

Leis de Conservação para Escoamento Monofásico

Conservação de massa

$$\frac{\partial \rho}{\partial t} + \mathbf{div}(\rho \, \vec{u}) = 0$$

- Conservação de quantidade de movimento $\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \bullet (\rho \mathbf{u} \mathbf{u}) = -\nabla p^{r} + \nabla \bullet (\mu [\nabla \mathbf{u} + (\nabla \mathbf{u})^{T}])$ $p^{r} = p - \rho \mathbf{g} \bullet \mathbf{x} - \frac{2}{3} \mu \nabla \bullet \mathbf{u}$
 - Conservação de energia

$$\frac{\partial (\rho h)}{\partial t} + \nabla \bullet (\rho h \mathbf{u}) = -\nabla \bullet \mathbf{q} + \frac{D p}{D t} + \tau : \nabla \mathbf{u} + \dot{q}$$
$$\mathbf{q} = -k \nabla T \qquad \qquad \frac{D(\cdot)}{D t} = \frac{\partial(\cdot)}{\partial t} + \mathbf{u} \bullet \nabla(\cdot)$$

Leis de Conservação para Escoamento Multifásico

 Mesma leis de conservação que o escoamento monofásico

Balanços Interfaciais

Balanços Interfaciais

Fluxo de massa interfacial

$$\dot{m}_k \equiv \rho_k \, \mathbf{n}_k \, \bullet (\mathbf{u}_k - \mathbf{u}_i)$$

 $\mathbf{u}_i = \mathbf{u}_{ni} + \mathbf{u}_{ti}$

- **u**_{ni} velocidade de deslocamento da interface $\mathbf{u}_{ni} = \mathbf{u}_i \bullet \mathbf{n}_k$
- Posição da interface $S(\mathbf{x}, t)$ $\mathbf{u}_{ni} = \mathbf{u}_i \cdot \mathbf{n}_k = -\frac{\partial S / \partial t}{|\nabla S|}$

Balanço de massa interfacial

$$\sum_{k=1}^{2} \rho_k \mathbf{n}_k \bullet (\mathbf{u}_k - \mathbf{u}_i) = 0 \quad \text{ou} \quad \sum_{k=1}^{2} \dot{m}_k = 0$$

Balanços Interfaciais

Fluxo momentum interfacial

$$\mathbf{M}_k = \rho_k \, \mathbf{n}_k \, \bullet (\mathbf{u}_k - \mathbf{u}_i) \, \mathbf{u}_k - \mathbf{n}_k \, \bullet \, \sigma_k$$

$$\mathbf{u}_{i}$$
 \mathbf{n}_{2} 1 \mathbf{n}_{1} \mathbf{n}_{1} A_{i} 2

 $\dot{m}_k \equiv \rho_k \, \mathbf{n}_k \, \bullet (\mathbf{u}_k - \mathbf{u}_i)$

$$\sigma_k = -p_k \mathbf{I} + \mathbf{\tau}_k$$

$$\mathbf{M}_k = \dot{m}_k \, \mathbf{u}_k + \mathbf{n}_k \, \mathbf{\bullet} \left(p_k \, \mathbf{I} - \boldsymbol{\tau}_k \right)$$

Balanço de quantidade de movimento interfacial

$$\sum_{k=1}^{2} \mathbf{M}_{k} = \mathbf{M}_{m}$$

2 0 1 7 Januar - Constanting

Balanços Interfaciais

Fonte de momentum de mistura

$$\mathbf{M}_m = 2 \kappa \gamma \mathbf{n} + \mathbf{M}_m^{\kappa}$$

normal tangencial

- Parcela normal representa o efeito líquido da curvatura da interface, onde κ é a curvatura média da superfície e γ é a tensão superficial.
- Parcela tangencial devido ao gradiente da tensão superficial.

Balanços Interfaciais

Balanço de energia

tensão

superficial

 Energia interna por unidade de área interfacial:

$$\frac{\partial i_a}{\partial t} + i_a \nabla \bullet \mathbf{u}_i = \mathbf{M}_k \bullet \mathbf{u}_i + \sum_{k=1}^2 \left[\rho_k \mathbf{n}_k \bullet (\mathbf{u}_k - \mathbf{u}_i) \left(i_k + \frac{u_k^2}{2} \right) + \mathbf{n}_k \bullet \left(-\sigma_k \bullet \mathbf{u}_k + \mathbf{q}_k \right) \right]$$

taxa de
variação da
energia da
trabalho
realizado pela
transferência de energia do fluido de
cada lado da interface

superfície

Balanços Interfaciais

Fluxo energia interfacial

$$E_k = \dot{m}_k \left(i_k + \frac{u_k^2}{2} \right) + \mathbf{n}_k \bullet \left[\left(p_k \mathbf{I} - \boldsymbol{\tau}_k \right) \bullet \mathbf{u}_k + \mathbf{q}_k \right]$$

Balanço de energia interfacial

Fonte de energia de mistura: E_m

 $\sum^{2} E_k = E_m$ k=1

Escoamentos Multifásicos

 Formulação local e instantânea para escoamentos multifásicos é muito difícil

Classes de Modelos

- Modelos de "um fluido": solução detalhada das equações de Navier Stokes
- Modelos de equações reduzidas, uso de grandezas médias

- solução detalhada das equações de Navier Stokes:
 - Malha Adaptativa
 - Fronteira Imersa
 - Volume of Fluid (VOF)
 - Level-Set

Os diferentes fluidos podem ser identificados com a função degrau *H* (Heaviside).
Fluido 1: *H* = 1, Fluido 2: *H* = 0

$$H(x, y) = \int_{A} \delta(x - x') \,\delta(y - y') \,d\,a'$$

• O gradiente de *H* pode ser avaliado utilizando o teorema de divergência $\nabla H = -\int \delta(x-x')\delta(x-x')\mathbf{n}\,ds'$

S(t)

$$\nabla H(x, y) = -\int_{S} \delta(s') \,\delta(n') \,\mathbf{n}' \,ds' = -\delta(n) \,\mathbf{n}$$

Modelos de "um fluido": Tratamento das Propriedades

Massa específica:

 $\rho(x, y) = \rho_1 H(x, y) + \rho_o [1 - H(x, y)]$

 $\nabla \rho(x, y) = (\rho_1 - \rho_o) \nabla H(x, y) = (\rho_1 - \rho_o) \delta(n) \mathbf{n}$

 Equações análogas podem ser escritas para as outras propriedades, como viscosidade e propriedades termofísicas

Malha Adaptativa

- Equações de conservação são escritas em um sistema de coordenadas curvilíneas móvel.
- Movimento da interface governado pelas condições de salto de massa, quantidade de movimento e energia na interface.

Método de Fronteira Imersa

- As equações de Navier-Stokes são resolvidas em uma malha fixa
- Uma frente móvel e deformável é usada para marcar a interface

Conhecendo informações da frente, as direções normais e tangenciais são facilmente obtidas

Método de Fronteira Imersa

Interpolando da malha

 As velocidades da malha fixa são interpoladas para serem utilizadas na malha móvel

$$\phi_{ijk} = \sum \phi_{\ell} w_{ijk}$$

Os pesos w_{ijk} podem ser selecionados de diferentes formas

Método de Fronteira Imersa

Aproximando os termos singulares

Os valores da frente são distribuídos na malha fixa

na frente: por comprimento

na malha: por volume

$$\phi_{ijk} = \sum \phi_{\ell} w_{ijk} \frac{\Delta S_{\ell}}{h^3}$$

Métodos de Captura de Interface: VOF e Level-Set

- Função marcadora: C
 - **VOF**: fração volumétrica de uma fase
 - Level-Set: distância à interface
- Evolução da função marcadora

$$\frac{DC}{Dt} = 0 \quad \Rightarrow \quad \frac{\partial C}{\partial t} + \mathbf{u} \bullet \nabla C = 0$$

VOF

Função marcadora:

fração volumétrica de uma fase

Phase 1 $\alpha = 1$ Phase 2 $\alpha = 0$ interface $\alpha \in (0,1)$

Excelente em satisfazer a conservação de massa.

Dificuldades com falsa difusão.

Level-Set

Função marcadora:
Função Distância com Sinal

- O campo distância é suave ao longo de todo o domínio, inclusive ao redor das interfaces.
- Problemas em satisfazer conservação de massa.

Equações de conservação:

Conservação de Massa:

$$\frac{\partial \rho}{\partial t} + \nabla \bullet (\rho \mathbf{u}) = 0$$

Conservação de Quantidade de Movimento Linear

$$\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \bullet (\rho \mathbf{u} \mathbf{u}) = -\nabla p^{\mathbf{r}} + \nabla \bullet (\mu [\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathrm{T}}]) + \gamma \kappa \,\delta(n) \,\mathbf{n}$$

$$p^{\mathbf{r}} = p - \rho \, \mathbf{g} \bullet \mathbf{x} - \frac{2}{3} \mu \, \nabla \bullet \mathbf{u}$$

 $\kappa = \nabla \bullet \mathbf{n}$

 κ = raio de curvatura γ = tensão interfacial

Estimativa da Curvatura

CSF (Continuous Surface Force)

$$\kappa = \nabla \bullet \left(\frac{\nabla \alpha}{|\nabla \alpha|} \right) \qquad \qquad \gamma \kappa \, \delta(n) \, \mathbf{n} = \gamma \, \nabla \bullet \left(\frac{\nabla \alpha}{|\nabla \alpha|} \right) \nabla \alpha$$

- Level-Set / VOF acoplamento
- Height-Function
- Reconstructed Distance Function (RDF)
- Kernels suavisado no VOF field
- Campo de VOF ajustado com superficies em intervalos quadráticos
- Point-cloud VOF

Movimento ascendente de uma bolha

através de uma restrição

(Melo e Nieckele, 1995)

Imagem de uma bolha de Taylor e campo de velocidade com PIV

(Melo e Nieckele, 1995)

Formação de Golfada

- Escoamento água/ar em uma tubulação com 2 in de diâmetro
 - solução numérica com VOF (Febres, 2009)
 - experimental (Fagundes Netto, 1999)

Calda da golfada

Nariz da golfada

Formação de Golfada

 Escoamento água/ar em uma tubulação com 1 in de diâmetro

$$U_{m} = 0,77 \text{ m/s}$$

PU

Kassar et al, Cobem, 2015 Kassar et al, ICMF, 2016

Modelos de Equações Reduzidas

Modelos de Equações Reduzidas

- O escoamento em geral é caótico, com a exceção de casos muito simples. Uma descrição estatística é necessária.
- É necessário definir propriedades médias da mistura: médias no volume, na área, médias temporais, médias de conjunto, ou uma combinação destas.

Definição de Médias

Média espacial: volume área

$$\frac{1}{\varDelta \forall} \int_{\varDelta \forall} F(t, \mathbf{x}) \, d\forall(\mathbf{x}) \qquad \frac{1}{\varDelta A} \int_{\varDelta A} F(t, \mathbf{x}) \, dA$$

 $\frac{1}{\Delta C} \int_{\Delta C} F(t, \mathbf{x}) \, dC$

- Média temporal: $\frac{1}{\Delta t} \int_{\Delta t} F(t, \mathbf{x}) dt$
- Média temporal: intervalo de tempo [\Delta t] deve ser grande o suficiente para suavizar as variações locais das propriedades, mas pequeno o suficiente quando comparado com o tempo macroscópico do escoamento.

Definição de Médias

- Médias no volume da fase
- Fração volumétrica da fase k: $\alpha_k = \frac{\forall_k}{\forall}$

 ∇

 $\overline{Z}_k(\mathbf{x},t) = \frac{1}{\forall_k} \int_{\forall_k} Z_k \, d\forall$

- •Volume: $\forall = \forall_1 + \forall_2 \rightarrow \alpha_1 + \alpha_2 = 1$
- •Fronteira do volume $\forall : S = S_1 + S_2$
- S_1 (pontilhada) e S_2 são as partes de \forall que estão em contato com as fases 1 e 2
- A soma das interfaces separando as duas fases dentro de $\forall e S_i$.

Formulação de Médias

Consequências do processo de média

suavização das flutuações de forma análoga a que ocorre em um escoamento monofásico turbulento

 existência de duas fases, que ocupam alternadamente um elemento de volume, no mesmo ponto, com uma probabilidade adequada para cada fase

Modelos de Equações Reduzidas

- Modelos de Dois Fluidos
 - Fases separadas, um conjunto de equações de conservação para cada fase
- Modelo de Deslizamento (Drift)
 - Modelo intermediário entre os outros dois. Determina o escoamento médio, porém, permite deslizamento entre as fases

Modelo Homogêneo

Pseudo propriedades de um único fluido

O Modelo de Deslizamento e o Modelo Homogêneo podem ser obtidos a partir do Modelo de Dois Fluidos

Modelos de Equações Reduzidas

 Processo de obtenção do conjunto de equações que caracteriza o Modelo de Dois Fluidos

201

Equações Médias 3D

Conservação média volumétrica de massa

$$\frac{\partial (\alpha_k \ \overline{\rho_k})}{\partial t} + \nabla \bullet \left(\alpha_k \ \overline{\rho_k} \ \mathbf{u}_k \right) = \Gamma_k$$

$$\Gamma_k = -\frac{1}{\forall} \int_{S_i} \dot{m}_k \ dS_i \qquad \dot{m}_k = \rho_k \ (\mathbf{u}_k - \mathbf{u}_i) \bullet \mathbf{n}_k \qquad \sum_{k=1}^N \Gamma_k = 0$$
fluxo de massa da fase k
através da interface S_i

Média de Favre:

 $\hat{\mathbf{u}}_k = \frac{\rho_k \, \mathbf{u}_k}{\overline{\rho}_k}$

fluxo volumétrico da fase *k* ou velocidade superficial.

$$\frac{\partial(\alpha_k \ \overline{\rho}_k)}{\partial t} + \nabla \bullet (\alpha_k \ \overline{\rho}_k \ \mathbf{\hat{u}}_k) = \Gamma_k$$

$$\mathbf{j}_k = \alpha_k \ \mathbf{\hat{u}}_k$$

Equação média volumétrica de conservação de quantidade de movimento linear

$$\frac{\partial (\alpha_k \ \overline{\rho_k \ \mathbf{u}_k})}{\partial t} + \nabla \bullet \left(\alpha_k \ \overline{\rho_k \ \mathbf{u}_k \ \mathbf{u}_k} \right) = \nabla \bullet \left(\alpha_k \ \overline{\sigma_k} \right) + \alpha_k \ \overline{\rho_k} \ \mathbf{g} + \mathbf{M}_k$$
$$\boldsymbol{\sigma}_k = -p_k \ \mathbf{I} + \boldsymbol{\tau}_k \quad ; \quad \boldsymbol{\tau}_k = \mu_k \left[\nabla \mathbf{u}_k + (\nabla \mathbf{u}_k)^{\mathrm{T}} - \frac{2}{3} \nabla \bullet \mathbf{u}_k \ \mathbf{I} \right]$$

Fluido Newtoniano

$$\sum_{k=1}^{N} \mathbf{M}_k = \mathbf{M}_m$$

Equação média volumétrica de conservação de quantidade de movimento linear

Média de Favre: $\overline{\rho_k \mathbf{u}_k \mathbf{u}_k} = \overline{\rho_k} \widehat{\mathbf{u}_k \mathbf{u}_k}$

Introduzindo a definição de flutuação

$$\mathbf{u}_k' = \mathbf{u}_k - \hat{\mathbf{u}}_k$$

$$\widehat{\mathbf{u}_{k} \mathbf{u}_{k}} = \widehat{\mathbf{u}}_{k} \ \widehat{\mathbf{u}}_{k} + \overline{\mathbf{u}_{k}' \mathbf{u}_{k}'} = \widehat{\mathbf{u}}_{k} \ \widehat{\mathbf{u}}_{k} - \overline{\mathbf{\tau}}_{k}'$$

$$\nabla \bullet \left(\alpha_{k} \ \overline{\rho_{k} \mathbf{u}_{k} \mathbf{u}_{k}} \right) = \nabla \bullet \left(\alpha_{k} \ \overline{\rho_{k}} \ \widehat{\mathbf{u}}_{k} \ \widehat{\mathbf{u}}_{k} \right) - \nabla \bullet \left(\alpha_{k} \ \overline{\mathbf{\tau}}_{k}' \right)$$

Equação média volumétrica de conservação de quantidade de movimento linear

$$\mathbf{\sigma}_k = -p_k \mathbf{I} + \mathbf{\tau}_k$$

$$\nabla \bullet (\alpha_k \,\overline{\sigma}_k) = -\nabla(\alpha_k \,\overline{p}_k) + \nabla \bullet (\alpha_k \,\overline{\tau}_k)$$
$$\nabla \bullet (\alpha_k \,\overline{\sigma}_k) = -\alpha_k \,\nabla \overline{p}_k - \overline{p}_k \,\nabla \alpha_k + \nabla \bullet (\alpha_k \,\overline{\tau}_k)$$
$$\mathbf{M}_k = \Gamma_k \,(\mathbf{u}_{ki} - \hat{\mathbf{u}}_k) + p_{ki} \nabla \alpha_k - \nabla \alpha_k \bullet \tau_{ki} + \mathbf{M}_{ki}$$

Força de arraste generalizada

Equação média volumétrica de conservação de quantidade de movimento linear

$$\frac{\partial (\alpha_k \ \overline{p}_k \ \mathbf{\hat{u}}_k)}{\partial t} + \nabla \bullet (\alpha_k \ \overline{p}_k \ \mathbf{\hat{u}}_k \ \mathbf{\hat{u}}_k) = -\alpha_k \nabla \ \overline{p}_k + \nabla \bullet [\alpha_k \ (\overline{\tau}_k + \overline{\tau'_k})] + \alpha_k \ \overline{p}_k \ \mathbf{g} + (\mathbf{u}_{ki} - \mathbf{\hat{u}}_k)\Gamma_k + (p_{ki} - \overline{p}_k)\nabla \alpha_k - \nabla \alpha_k \bullet \tau_{ki} + \mathbf{M}_{ki}$$

• Equações de fechamento: Γ_k ; \mathbf{M}_{ki} ; $\overline{\tau'_k}$; τ_{ki}

N

k=1

 $\sum E_k = E_m$

Equação média volumétrica de conservação de energia

$$\frac{\partial (\alpha_k \ \rho_k \ h_k)}{\partial t} + \nabla \bullet \left(\alpha_k \ \overline{\rho_k \ \mathbf{u}_k \ h_k} \right) = \alpha_k \ \overline{\dot{q}_k}$$

$$-\nabla \bullet (\alpha_k \ \overline{\mathbf{q}}_k) + \frac{D_k(\alpha_k \ \overline{p}_k)}{D t} + \alpha_k \ \overline{\mathbf{\tau}_k : \mathbf{u}_k} + E_k$$

$$E_{k} = \Gamma_{k} \left(h_{ki} + \mathbf{u}_{ki} \bullet \hat{\mathbf{u}}_{k} - \frac{\hat{u}_{k}^{2}}{2} \right) + q_{ki} - p_{ki} \frac{\partial \alpha_{k}}{\partial t} + \left[\mathbf{M}_{ki} - \nabla \alpha_{k} \bullet \boldsymbol{\tau}_{ki} \right] \bullet \mathbf{u}_{ki}$$

Equação média volumétrica de conservação de energia

Introduzindo a média Favre e a definição de flutuação

$$\frac{\partial (\alpha_{k} \ \overline{\rho}_{k} \ \overline{h}_{k})}{\partial t} + \nabla \bullet (\alpha_{k} \ \overline{\rho}_{k} \ \mathbf{\hat{u}}_{k} \ \overline{h}_{k}) = \alpha_{k} \ \overline{\dot{q}_{k}} +$$

$$-\nabla \bullet [\alpha_{k} (\ \overline{\mathbf{q}}_{k} + \overline{\mathbf{q}'_{k}})] + \alpha_{k} \ \frac{D_{k} < p_{k} >}{D t} + \phi_{k}^{\mu} + \phi_{k}' +$$

$$+ \Gamma_{k} \ h_{ki} + q_{ki} \ + (\overline{p}_{k} - p_{ki}) \frac{D_{k} \alpha_{k}}{D t} + [\mathbf{M}_{ki} - \nabla \alpha_{k} \bullet \mathbf{\tau}_{ki}] \bullet (\mathbf{u}_{ki} - \mathbf{\hat{u}}_{k})$$

$$\phi_{k}^{\mu} = \alpha_{k} \ \overline{\mathbf{\tau}}_{k} : \nabla \mathbf{\hat{u}}_{k} \ ; \quad \phi_{k}' = \alpha_{k} \ \overline{\mathbf{\tau}'_{k}} : \nabla \mathbf{u}'_{k} - \overline{\mathbf{u}'_{k}} \bullet \nabla \bullet (\alpha_{k} \ \mathbf{\tau}'_{k})$$
Dissipação viscosa Fonte de energia turbulenta

Equação de Energia Simplificada

Desprezando:

- geração de calor
- termos devido aos efeitos mecânicos
 (transferência de calor e mudança de fase dominantes)

$$\frac{\partial (\alpha_k \ \overline{\rho}_k \ h_k)}{\partial t} + \nabla \bullet (\alpha_k \ \overline{\rho}_k \ \mathbf{\hat{u}}_k \ \overline{h}_k) = -\nabla \bullet [\alpha_k (\ \overline{\mathbf{q}}_k + \overline{\mathbf{q}'_k})] + \Gamma_k \ h_{ki} + \ q_{ki}$$

$$\sum_{k=1}^{2} \Gamma_k h_{ki} + q_{ki} = 0$$

Modelos de Dois Fluidos Isotérmico

Conservação de massa para cada fase

$$\frac{\partial (\alpha_k \ \overline{\rho}_k)}{\partial t} + \nabla \bullet (\alpha_k \ \overline{\rho}_k \ \mathbf{\hat{u}}_k) = \Gamma_k$$

Conservação de quantidade de movimento para cada fase

$$\frac{\partial (\alpha_k \ \overline{\rho}_k \ \mathbf{\hat{u}}_k)}{\partial t} + \nabla \bullet (\alpha_k \ \overline{\rho}_k \ \mathbf{\hat{u}}_k \ \mathbf{\hat{u}}_k) = -\alpha_k \nabla \ \overline{p}_k + \nabla \bullet [\alpha_k \ (\overline{\tau}_k + \overline{\tau'_k})] + \alpha_k \ \overline{\rho}_k \ \mathbf{g} +$$

$$+(\mathbf{u}_{ki}-\mathbf{\hat{u}}_k)\Gamma_k+(p_{ki}-\overline{p}_k)\nabla\,\alpha_k-\nabla\alpha_k\bullet\tau_{ki}+\mathbf{M}_{ki}$$

Modelos de Deslizamento (Drift)

- Conservação de massa
 - para cada fase

$$\frac{\partial (\alpha_k \ \overline{\rho}_k)}{\partial t} + \nabla \bullet (\alpha_k \ \overline{\rho}_k \ \mathbf{\hat{u}}_k) = \Gamma_k \qquad k = 1 \quad e \quad 2$$

ou

 uma fase e a mistura, onde a conservação da mistura é obtida somando as equações de conservação de cada fase

$$\frac{\partial \rho_m}{\partial t} + \nabla \bullet (\rho_m \mathbf{u}_m) = 0 \qquad \qquad \frac{\partial (\alpha_1 \ \overline{\rho}_1)}{\partial t} + \nabla \bullet (\alpha_1 \ \overline{\rho}_1 \ \mathbf{u}_m) = \Gamma_1 + \nabla \bullet [\alpha_1 \ \overline{\rho}_1 \ (\mathbf{u}_m - \mathbf{\hat{u}}_1)]$$

 $\rho_m = \alpha_1 \,\overline{\rho}_1 + \,\alpha_2 \,\overline{\rho}_2 \qquad \qquad \rho_m \,\mathbf{u}_m = \alpha_1 \,\overline{\rho}_1 \,\hat{\mathbf{u}}_1 + \,\alpha_2 \,\overline{\rho}_2 \,\hat{\mathbf{u}}_2$

Modelos de Deslizamento (Drift)

Conservação de quantidade de movimento para a mistura

$$\frac{\partial(\rho_m \mathbf{u}_m)}{\partial t} + \nabla \bullet (\rho_m \mathbf{u}_m \mathbf{u}_m + \mathbf{J}) = \rho_m \mathbf{g} - \nabla p_m + \nabla \bullet \tau_m + \frac{1}{\forall} \int_{S_i} (\mathbf{u}_1 - \mathbf{u}_2) \dot{m} \, dS_i$$

 $p_m = \alpha_1 p_1 + \alpha_2 p_2$; $\tau_m = \alpha_1 \tau_1 + \alpha_2 \tau_2$

J é o fluxo de deslizamento ("drift flux") generalizado

(desprezando termos de correlação cruzada e para fluidos incompressíveis)

$$\rho_m \mathbf{J} = \alpha_1 \alpha_2 \rho_1 \rho_2 (\mathbf{\hat{u}}_2 - \mathbf{\hat{u}}_1) (\mathbf{\hat{u}}_2 - \mathbf{\hat{u}}_1)$$

 Modelo para a velocidade de deslizamento (û₂ - û₁) utiluza-se modelos empíricos (Ishii, 1975, Hibiki e Ishii, 2002 e 2003).

Modelo Homogêneo

- As duas fases escoam com a mesma velocidade: J = 0
- Conservação de massa da mistura

$$\frac{\partial \rho_m}{\partial t} + \nabla \bullet \left(\rho_m \, \mathbf{u}_m \right) = 0$$

Conservação de quantidade de movimento da mistura

$$\frac{\partial (\rho_m \mathbf{u}_m)}{\partial t} + \nabla \bullet (\rho_m \mathbf{u}_m \mathbf{u}_m) = \rho_m \mathbf{g} - \nabla p_m + \nabla \bullet \tau_m$$

Comentários sobre as Equações Reduzidas

- Os modelos baseados na equações reduzidas, são baseados nas equações médias temporais
- Necessitam de equações de fechamento para avaliar as iterações existentes nas interfaces

Modelo de Dois Fluidos 1D

Modelo de Dois Fluidos 1D

- O Modelo de Dois Fluidos 1D é extremamente usado na simulação de escoamentos bifásicos em dutos
 - Ex. Indústria do petróleo, nuclear, etc
- Natureza complexa (3D) do escoamento (ex. regime de golfadas)
 - Apesar disso, estratégia 1D ainda é a mais adequada para a simulação de longos dutos

- No entanto, é preciso ter extremo cuidado
 - O processo de média leva a perda de informação
 - Modelos de fechamento devem ser incorporados
 - Efeito crítico sobre o caráter matemático das equações (<u>bem- ou mal-posto</u>)

Modelos de Equações Reduzidas 1D

 Processo de obtenção do conjunto de equações que caracteriza o Modelo de Dois Fluidos 1D

Modelo de Dois Fluidos 1D

- integrar as equações tri-dimensionais através da seção transversal
- introduzir valores médios apropriados.
 - $\langle \langle F_k \rangle \rangle (\mathbf{x}, t) = \frac{\langle \alpha_k | F_k \rangle}{\langle \alpha_k \rangle}$ $\langle F_k \rangle (\mathbf{x},t) = \frac{1}{A_t} \int_A F_k \, dA_t$
 - Fração de vazio
 - O componente axial da velocidade média na área ponderada da fase k

$$\left\langle \left\langle \widehat{u}_{k}\right\rangle \right\rangle =rac{\left\langle lpha_{k}\ \widehat{u}_{k}
ight
angle }{\left\langle lpha_{k}
ight
angle }=rac{\left\langle j_{k}
ight
angle }{\left\langle lpha_{k}
ight
angle }$$

fluxo volumétrico da fase k ou velocidade superficial.

$$\langle \alpha_k \rangle = \frac{\langle \forall_k \rangle}{\forall}$$

$$\left\langle \left\langle \widehat{u}_{k}\right\rangle \right\rangle =\frac{\left\langle \alpha_{k}\ \widehat{u}_{k}\right\rangle }{\left\langle \alpha_{k}\right\rangle }=\frac{\left\langle j_{k}\right\rangle }{\left\langle \alpha_{k}\right\rangle }$$

$$\langle j_k \rangle = \langle \alpha_k \ \hat{u}_k \rangle \qquad \langle j \rangle = \sum_{k=1}^2 \langle j_k \rangle = \sum_{k=1}^2 \langle \alpha_k \ \hat{u}_k \rangle$$

Conservação de Massa 1D

$$\frac{1}{A_t} \int_{A_t} \left\{ \frac{\partial (\alpha_k \ \overline{\rho}_k)}{\partial t} + \nabla \bullet (\alpha_k \ \overline{\rho}_k \ \widehat{\mathbf{u}}_k) \right\} dA_t = \frac{1}{A_t} \int_{A_t} \Gamma_k \ dA_t$$

Escoamento 1D na direção x:

$$\hat{u}_{ky} \ll \hat{u}_{kx}$$
 $\hat{u}_{kz} \ll \hat{u}_{kx}$ $\frac{\partial}{\partial z} \sim 0$

$$\frac{\partial}{\partial t}(\langle \alpha_k \rangle \,\bar{\rho}_k) + \frac{\partial}{\partial x}(\langle \alpha_k \rangle \,\bar{\rho}_k \langle \langle \hat{u}_{kx} \rangle \rangle) = \langle \Gamma_k \rangle$$

Equações de fechamento: $\langle \Gamma_k \rangle$

Conservação de Quantidade de Movimento Linear 1D

$$\frac{1}{A_t} \int_{A_t} \left\{ \frac{\partial \alpha_k \ \overline{\rho}_k \ \hat{\mathbf{u}}_k}{\partial t} + \nabla \bullet (\alpha_k \ \overline{\rho}_k \ \hat{\mathbf{u}}_k \ \hat{\mathbf{u}}_k) \right\} dA_t =$$

$$= \frac{1}{A_t} \int_{A_t} \left\{ \alpha_k \nabla \ \overline{p}_k + \nabla \bullet \left[\alpha_k \left(\overline{\mathbf{\tau}}_k + \overline{\mathbf{\tau}'_k} \right) \right] \right\} dA_t + \frac{1}{A_t} \int_{A_t} \alpha_k \ \overline{\rho}_k \ \mathbf{g}_k \ dA_t$$

$$+ \frac{1}{A_t} \int_{A_t} \left\{ (\mathbf{u}_{ki} - \hat{\mathbf{u}}_k) \Gamma_k + (p_{ki} - \overline{p}_k) \nabla \alpha_k - \nabla \alpha_k \bullet \mathbf{\tau}_{ki} + \mathbf{M}_{ki} \right\} dA_t$$

Escoamento 1D na direção x:

$$\hat{u}_{ky} \ll \hat{u}_{kx}$$
 $\hat{u}_{kz} \ll \hat{u}_{kx}$ $\frac{\partial}{\partial z} \sim 0$

Conservação de Quantidade de Movimento Linear 1D

• Termo convectivo $\frac{1}{A_t} \int \nabla \bullet (\alpha_k \ \overline{\rho}_k \ \widehat{\mathbf{u}}_k \ \widehat{\boldsymbol{u}}_k) \, dA_t \approx \frac{1}{A_t} \int \frac{\partial}{\partial x} (\alpha_k \ \overline{\rho}_k \ \widehat{\boldsymbol{u}}_k \ \widehat{\boldsymbol{u}}_k) \, dA_t$

$$\frac{1}{A_t} \int_{A_t} \nabla \bullet (\alpha_k \ \overline{\rho}_k \ \widehat{\mathbf{u}}_k \ \widehat{u}_k) \ dA_t = \frac{\partial}{\partial x} \Big(\overline{\rho}_k \big\langle \alpha_k \ \big\rangle \big\langle \big\langle \widehat{u}_k \ \widehat{u}_k \big\rangle \big\rangle \Big)$$

Parâmetro de distribuição

$$C_{u,k} = \frac{\langle \langle u_k^2 \rangle \rangle}{\langle \langle u_k \rangle \rangle^2}$$

$$C_{u,k} = \frac{\langle \langle u_k^2 \rangle \rangle}{\langle \langle u_k \rangle \rangle^2} = \frac{\langle \alpha_k u_k^2 \rangle}{\langle \alpha_k \rangle \langle \langle u_k \rangle \rangle^2} = \frac{\langle \alpha_k u_k^2 \rangle \langle \alpha_k \rangle^2}{\langle \alpha_k \rangle \langle u_k \rangle^2} = \frac{\int \alpha_k u_k^2 dA \int \alpha_k dA}{\left(\int \alpha_k u_k dA\right)^2}$$

$$\frac{1}{A_t} \int_{A_t} \nabla \bullet (\alpha_k \ \overline{\rho}_k \ \widehat{\mathbf{u}}_k \) dA_t = \frac{\partial}{\partial x} (C_{u,k} \langle \alpha_k \rangle \overline{\rho}_k \langle \langle \widehat{u}_k \rangle \rangle \langle \langle \widehat{u}_k \rangle \rangle)$$

Conservação de Quantidade de Movimento Linear 1D

Fluxo líquido viscoso na direção x

$$\frac{1}{A_{t}}\int_{A_{t}}\nabla \bullet \left[\alpha_{k}\left(\overline{\mathbf{\tau}}_{k}+\overline{\mathbf{\tau}'_{k}}\right)\right]dA_{t} = \\
= \frac{1}{A_{t}}\int_{A_{t}}\left\{\frac{\partial}{\partial x}\left[\alpha_{k}\left(\overline{\mathbf{\tau}}_{k_{xx}}+\overline{\mathbf{\tau}'_{k_{xx}}}\right)\right] + \frac{\partial}{\partial y}\left[\alpha_{k}\left(\overline{\mathbf{\tau}}_{k_{xy}}+\overline{\mathbf{\tau}'_{k_{xy}}}\right)\right] + \frac{\partial}{\partial z}\left[\alpha_{k}\left(\overline{\mathbf{\tau}}_{k_{xz}}+\overline{\mathbf{\tau}'_{k_{xz}}}\right)\right]\right\}dA_{t} \\
= \frac{1}{A_{t}}\int_{A_{t}}\nabla \bullet \left[\alpha_{k}\left(\overline{\mathbf{\tau}}_{k}+\overline{\mathbf{\tau}'_{k}}\right)\right]dA_{t} = -\frac{\tau_{wk}S_{k}}{A_{t}} + \frac{\partial}{\partial x}\left[\langle\alpha_{k}\rangle\left\langle\left\langle\overline{\mathbf{\tau}}_{k_{xx}}+\overline{\mathbf{\tau}'_{k_{xx}}}\right\rangle\right\rangle\right]\right]$$

 \circ τ_{Wk} tensão cisalhante que atua na parede do duto

Conservação de Quantidade de Movimento Linear 1D

Termo interfacial

$$\frac{1}{A_t} \int_{A_t} \{ (\mathbf{u}_{ki} - \hat{\mathbf{u}}_k) \Gamma_k + \mathbf{M}_{ik} - \nabla \alpha_k \bullet \tau_{ki} + (p_{ki} - \overline{p}_k) \nabla \alpha_k \} dA_t =$$

$$= \left(\left\langle \left\langle \mathbf{u}_{ki} \right\rangle \right\rangle - \left\langle \left\langle \hat{\mathbf{u}}_{k} \right\rangle \right\rangle\right) \left\langle \Gamma_{k} \right\rangle + \left\langle \mathbf{M}_{k}^{d} \right\rangle + \left(\left\langle \left\langle p_{ki} \right\rangle \right\rangle - \left\langle \left\langle \overline{p}_{k} \right\rangle \right\rangle\right) \frac{\partial \left\langle \left\langle \alpha_{k} \right\rangle \right\rangle}{\partial x}$$

força cisalhante interfacial total: $\langle \mathbf{M}_{k}^{d} \rangle = \langle \mathbf{M}_{ik} \rangle_{x} - \langle \nabla \alpha_{k} \bullet \boldsymbol{\tau}_{ki} \rangle_{x}$ $\langle \mathbf{M}_{k}^{d} \rangle = -\frac{\boldsymbol{\tau}_{i} S_{i}}{A_{t}}$

$$\circ \tau_i$$
 Tensão cisalhante na interface

Conservação de Quantidade de Movimento Linear 1D

$$\begin{aligned} \frac{\partial \langle \alpha_k \rangle \,\overline{\rho}_k \langle \langle \hat{u}_k \rangle \rangle}{\partial t} + \frac{\partial}{\partial x} \Big(C_{u,k} \langle \alpha_k \rangle \,\overline{\rho}_k \langle \langle \hat{u}_k \rangle \rangle \Big) &= \\ = - \langle \alpha_k \rangle \frac{\partial}{\partial x} \langle \langle \overline{p}_k \rangle \rangle - \frac{\tau_{wk} \, S_k}{A_t} + \frac{\partial}{\partial x} \Big[\langle \alpha_k \rangle \langle \langle \overline{\tau}_{k_{xx}} + \overline{\tau}_{k_{xx}}' \rangle \Big] \\ + \langle \alpha_k \rangle \,\overline{\rho}_k \, g_x + \langle \langle \hat{u}_{ki} - \hat{u}_k \rangle \rangle \langle \Gamma_k \rangle \pm \frac{\tau_i \, S_i}{A_t} + \frac{\partial \langle \langle \alpha_k \rangle \rangle}{\partial x} \Big(\langle \langle p_{ki} \rangle \rangle - \langle \langle p_k \rangle \rangle \Big) \Big] \end{aligned}$$

Equações de fechamento: $C_{u,k}$; τ_{wk} ; τ_i

$$p_{ki} - p_k$$
; $p_{gi} - p_{li}$

Equações de Conservação 1D

Conservação de energia

$$\frac{\partial \langle \alpha_k \rangle \,\overline{\rho}_k \left\langle \left\langle \hat{h}_k \right\rangle \right\rangle}{\partial t} + \frac{\partial}{\partial x} \left(C_{h,k} \langle \alpha_k \rangle \,\overline{\rho}_k \left\langle \left\langle \hat{u}_k \right\rangle \right\rangle \left\langle \left\langle \hat{h}_k \right\rangle \right\rangle \right) =$$
$$= \frac{q_{wk} \, S_k}{A_t} - \frac{\partial}{\partial x} \left[\left\langle \alpha_k \right\rangle \left\langle \left\langle q_{k_x} + \overline{q'_{k_x}} \right\rangle \right\rangle \right] + \left\langle \left\langle h_{ki} \right\rangle \right\rangle \left\langle \Gamma_k \right\rangle + \left\langle \left\langle q_{ki} \right\rangle \right\rangle$$

- Sem transferência de massa e sem difusão axial
- Eliminando as barras para simplificar

$$\frac{\partial}{\partial t}(\rho_k \alpha_k h_k) + \frac{\partial}{\partial x}(C_{h,k} \rho_k \alpha_k u_k h_k) = \frac{q_{wk}S_k}{A} \pm \frac{q_iS_i}{A}$$

Equações de fechamento: $C_{u,h}$; q_{wk} ; q_i

Modelo 2 Fluidos Isotérmico 1D

- Hipóteses:
 - Sem transferência de massa, isotérmico, sem difusão axial
- Eliminando as barras para simplificar

$$u_k = \left\langle \left\langle \hat{u}_{kx} \right\rangle \right\rangle$$

$$\frac{\partial}{\partial t}(\rho_k \alpha_k) + \frac{\partial}{\partial x}(\rho_k \alpha_k u_k) = 0$$

$$\frac{\partial}{\partial t}(\rho_k \alpha_k u_k) + \frac{\partial}{\partial x} \left(C_{u,k} \rho_k \alpha_k u_k^2\right) = \\ = -\alpha_k \frac{\partial p_{ki}}{\partial x} + \frac{\partial \alpha_k \left(p_{ik} - p_k\right)}{\partial x} - \alpha_k \rho_k g_x - \frac{\tau_{wk} S_k}{A} \pm \frac{\tau_i S_i}{A}$$

Modelo Homogêneo Isotérmico 1D

- Hipóteses:
 - Bifásico, sem transferência de massa, isotérmico, sem difusão axial

$$\frac{\partial \rho_m}{\partial t} + \frac{\partial (\rho_m \, u_m)}{\partial z} = 0$$

$$\frac{\partial(\rho_m \, u_m)}{\partial t} + \frac{\partial(\rho_m \, u_m \, u_m)}{\partial z} = -\frac{\partial \, p_m}{\partial z} - \rho_m \, g \, \operatorname{sen}\beta \, - \frac{\tau_w \, S_w}{A}$$

• Equações de fechamento: τ_w

Modelos 1-D de Deslizamento (Drift)²⁰¹

Hipóteses:

- Bifásico, sem transferência de massa, isotérmico, sem difusão axial
- Equação de conservação de massa

$$\frac{\partial(\alpha_g \ \rho_g)}{\partial t} + \frac{\partial(\alpha_g \ \rho_g \ u_g)}{\partial z} = 0 \qquad \qquad \frac{\partial(\alpha_\ell \ \rho_\ell)}{\partial t} + \frac{\partial(\alpha_\ell \ \rho_\ell \ u_\ell)}{\partial z} = 0$$
ou
$$\frac{\partial(\alpha_g \ \rho_g)}{\partial t} + \frac{\partial(\alpha_g \ \rho_g \ u_m)}{\partial z} = -\frac{\partial(\alpha_g \ \rho_g \ V_{gm})}{\partial z} \qquad \qquad V_{gm} = u_g - u_m$$

$$\frac{\partial(\alpha_g \ \rho_g)}{\partial t} + \frac{\partial(\alpha_g \ \rho_g \ u_m)}{\partial z} = 0$$

Modelos 1-D de Deslizamento (Drift)²⁰¹

Equação de conservação de quantidade de movimento

• Equações de fechamento: τ_w ; $V_{gm} = (u_g - u_m)$; $u_r = (u_g - u_\ell)$

velocidade relativa entre fases

Modelos 1-D de Deslizamento (Drift)²⁰¹⁷

- velocidade entre fases:
- velocidade relativa entre a fase gasosa e o fluxo volumétrico $j = \alpha_g u_g + \alpha_\ell u_\ell$
- velocidade relativa entre a fase gasosa e velocidade média
- Formulação de Zuber-Findlay (1965):
 - C_o : parâmetro de distribuição: considera o efeito de α_g e u_m nos perfis V_{drif} : velocidade de deslizamento

$$V_{gj} = V_{drift} + (C_o - 1) j$$
$$J = \frac{\alpha_g}{\alpha_\ell} \frac{\rho_g \rho_\ell}{\rho_m} V_{gj}^2$$

$$u_{r} = (u_{g} - u_{\ell})$$

$$V_{gj} = u_{g} - j \quad \text{ou}$$

$$V_{gj} = \alpha_{\ell}(u_{g} - u_{\ell}) = \alpha_{\ell} u_{r}$$

$$V_{gm} = u_{g} - u_{m}$$

$$u_{g} = C_{o} \quad j + V_{drift}$$

$$u_g = u_m + \frac{\rho_\ell}{\rho_m} V_{gj}$$
$$u_\ell = u_m - \frac{\alpha_g}{1 - \alpha_g} \frac{\rho_g}{\rho_m} V_{gj}$$

Análise das Características do Modelo de² Dois Fluidos 1D

- Segundo Courant e Lax (1949) um modelo é considerado "bem-posto" ("Well-posed") se as condições de Hadamard são satisfeitas
 - A solução existe
 - A solução é única
 - A solução depende continuamente das condições iniciais e de contorno
- Para tal, a análise das características é realizada

Análise das Características do Modelo de² Dois Fluidos 1D

Linearização do sistema de equações

$$\mathbf{A}(\mathbf{v}) \ \frac{\partial}{\partial t}\mathbf{v} + \mathbf{B}(\mathbf{v}) \ \frac{\partial}{\partial x}\mathbf{v} + \mathbf{C}(\mathbf{v}) = 0 \qquad \begin{array}{l} 0 \le x \le L \quad t \ge 0 \\ \mathbf{v}(0,x) = \mathbf{v}_{ini}(x) \end{array}$$

"Mal-posto"

A e **B** são matrizes *Jacobianas* de dimensão $n \times n$

C é um vetor coluna de dimensão *n*

- Características λ_n do sistema, são definidas tais que det $(\mathbf{B} - \lambda_n \mathbf{A}) = 0$
 - reais distintas: sistema hiperbólico
 - nulas: sistema parabólico
 - complexas: sistema elíptico²
Modelo "Bem-posto" vs. "Mal-posto"

Montini (2011)

- Taxa de crescimento das perturbações
- Bem-posto vs. Mal posto

- Carneiro (2006)
- Transição escoamento estratificado -> golfadas
- Frequência das golfadas para casos bem e malpostos

PI

Estabilidade vs. Bom-Condicionamento

 10^{2}

IKH

well-posed

201

Dispersed Bubble

(b)

 10^{2}

2.5

- Escoamento estratificado e golfadas
 - Região estável (bem posto)

Parâmetro de Forma/Distribuição

- Geralmente considera-se $C_{u,k} = 1$
- *C_{u,k}* corrige o fato de que o perfil de velocidades não é uniforme (ex. Escoamento estratificado)
- Altera o fluxo de quantidade de movimento
- Escoamento monofásico:
 - Laminar: $C_{u,k} = 4/3 = 1,33$
 - Turbulento (lei de 1/7): C_{u,k}=1,02

C_{u,k} geralmente empírico, pode depender de velocidades, geometria e frações volumétricas

(Febres, 2010)

Tensão Cisalhante das fases com a parede e na interface

$$\tau_{wk} = f_k \frac{1}{2} \overline{\rho}_k \left\langle \hat{u}_k \right\rangle \left| \left\langle \hat{u}_k \right\rangle \right| \qquad \tau_i = f_i \frac{1}{2} \overline{\rho}_i \left\langle \hat{u}_2 - \hat{u}_1 \right\rangle \left| \left\langle \hat{u}_2 - \hat{u}_1 \right\rangle \right|$$

 f_k : fator de atrito, determinado empiricamente em função do número de Reynolds da fase k

- Difusão axial frequentemente desprezada
- Salto de pressão na interface:
 - Tensão superficial: γ

Curvatura: κ

$$(p_{ig} - p_{i\ell}) = \gamma \kappa$$

 Diferença entre a pressão média em cada fase e pressão interfacial

- É possível demonstrar que, se a pressão média em cada fase for constante e igual a pressão interfacial, o modelo é mal-posto sob qualquer condição (exceto $u_l = u_g$)
- Escoamento <u>horizontal ou levemente inclinado</u>: Banerjee e Chan (1980) propuseram a consideração de uma distribuição hidrostática de pressão

$$\frac{\partial \alpha_k (p_k - p_{kl})}{\partial x} = \alpha_k \rho_k g \cos \beta \frac{\partial h_l}{\partial x}$$

Diferença entre a pressão média em cada fase e pressão interfacial

• Escoamento vertical:

$$\frac{\partial \alpha_k(p_k - p_{kl})}{\partial x}$$

Reference	Formulation
Model 1 (Fowler and Lisseter, 1992)	$\Delta P_{Li} = W_f \rho_L (U_L - U_{wave})^2$ $U_{wave} = X U_L, X = const.$
Model 2 (Gonzalez, Nieckele and Carneiro, 2016) (Berna et al., 2014)	$\Delta P_{Li} = W_f \rho_L (U_L - U_{wave})^2$ $U_{wave} = U_{wave} (U_{sL}, U_{sG}, \rho_L, \rho_G, \mu_L, \mu_G, \sigma)$
Model 3 (Bestion, 1990)	$\Delta P_{Gi} = \Delta P_{Li} = 1.2 \ \rho_m (U_L - U_G)^2$

Outros métodos de regularização

- Massa virtual
- Difusão Artificial
 - Equação de Quantidade de Movimento
 - Equação da Conservação de Massa

Água + ar Golfada

2017

Inácio, 2012

Comentários Finais

- Diferentes tipos de modelos podem ser utilizados dependendo do tipo de aplicação
- Modelos de "um fluido":
 - Apresentam uma demanda computacional maior
 - Envolvem um grau menor de hipóteses simplificadoras
 - É necessário determinar com precisão da posição da interface, raio de curvatura para obtenção de solução de qualidade

Comentários Finais

- Modelos baseados na equações médias:
 - são mais simples e de solução mais rápida.
 - Possuem diferentes graus de aproximação e necessitam de equações de fechamento para avaliar as iterações existentes nas interfaces
 - Fechamento 1D possui profundo efeito no caráter matemático das equações do Modelo de Dois Fluidos 1D
 - Se manifesta, por exemplo, na impossibilidade de se obter uma solução independente da malha
 - É preciso ter extremo cuidado: softwares comerciais frequentemente "mascaram" os efeitos de um modelo mal-posto pois malhas grosseiras são utilizadas

Obrigado !

Agradecimentos:

João N.E. Carneiro (Sintef do Brasil)

