

Instituto Politécnico, Nova Friburgo August 30th- September 3rd, 2004

Paper CRE04 - PM24

Análise Estática e Modal da Gaiola do Mini-Baja Utilizando o Método dos Elementos Finitos

Thiago Caetano de Freitas¹, Maurício Ferreira Jardim² e João Antônio Pereira³

Departamento de Engenharia Mecânica, DEM, Faculdade de Engenharia de Ilha Solteira, FEIS / UNESP CP 151, CEP 15385-000, Ilha Solteira, SP, Brasil

¹thiagoc@dem.feis.unesp.br, ²mauricio@dem.feis.unesp.br, ³japereira@dem.feis.unesp.br

Muitos problemas de Engenharia, em particular na área de cálculo estrutural, envolve o cálculo de estruturas complexas. Os métodos analíticos clássicos permitem o cálculo exato dos deslocamentos, deformações e tensões da estrutura, entretanto, estas soluções são conhecidas apenas para alguns casos mais simples, que fogem da maioria das aplicações práticas de engenharia. O método dos elementos finitos é um procedimento aproximado que tem sido muito utilizado na análise e desenvolvimento de projetos estruturais para sistemas mais complexos, independente da geometria e das condição de carregamento da estrutura dentro da precisão da engenharia. Esse procedimento alternativo constitui-se em uma ferramenta poderosa de análise que será utilizada para avaliar o comportamento estrutural do mini-baja. O mini-baja, fig. 1, é um protótipo de um carro de corrida construído pelos estudantes de Engenharia Mecânica da Unesp- Ilha Solteira para competições entre os diversos cursos de engenharia mecânica.

Figura 1 – Mini Baja

No presente trabalho, a estrutura foi inicialmente modelada em AutoCad, plataforma 3D e exportada para a extensão *iges e, posteriormente, importada pelo software de elementos finitos, Ansys 7.0. A estrutura é composta de tubos de aço $\phi_{\iota\epsilon\xi\tau}$ =30 mm e espessura t=2,125 mm, que são representado por elemento do tipo pipe no modelo de elementos finitos. A malha do modelo de EF foi discretizada em 460 elementos, totalizando 2658 graus de liberdade. As propriedades do material utilizadas foram módulo de young E= 207000 Mpa e densidade ρ = 7,8 10^6 N/m³. A solução estática do modelo foi calculada considerando-se o próprio peso das vigas e o modelo dinâmico foi resolvido para a condição livre-livre. As figuras abaixo mostram o resultado obtido.

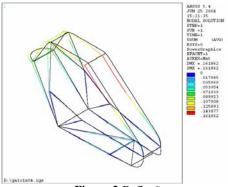


Figura 2-Deflexões

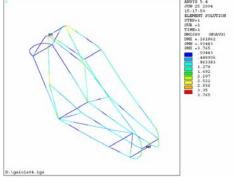


Figura 3-Tensões

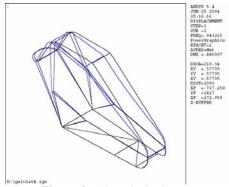


Figura 4 – 1° modo de vibração

Tabala 1 – Freqüência dos primeiros modos de vibração

MODO	FREQUÊNCIA(Hz)
1°	0.9432
2°	0.9479
3°	1.4472
4°	2.4121
5°	2.5212

Este trabalho mostrou a utilização do métodos do elementos finitos para a análise do comportamento de uma estrutura razoavelmente complexa. A estrutura inicial foi projetada no AutoCad, dada as suas facilidades e posteriormente o desenho foi importado pelo software de elementos finitos o que facilitou o desenho e a geração da malha do modelo de elementos finitos.

REFERÊNCIAS

- [1] ALVES FILHO, A. Elementos Finitos. A base da tecnologia CAE. São Paulo: Érica, 2000.
- [2] FREITAS, T. C., JARDIM, M. F.; PEREIRA, J. A. Modelagem computacional do mini-baja utilizando o método dos elementos finitos. Congresso de Iniciação Científica da UNESP, XV, 2003, Marília.